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Abstract

Contour trees are extensively used in scalar field analysis. The contour tree is a data structure that
tracks the evolution of level set topology in a scalar field. Scalar fields are typically available as
samples at vertices of a mesh and are linearly interpolated within each cell of the mesh. A more
suitable way of representing scalar fields, especially when a smoother function needs to be modeled,
is via higher order interpolants. We propose an algorithm to compute the contour tree for such func-
tions. The algorithm computes a local structure by connecting critical points using a numerically
stable monotone path tracing procedure. Such structures are computed for each cell and are stitched
together to obtain the contour tree of the function. The algorithm is scalable to higher degree inter-
polants whereas previous methods were restricted to quadratic or linear interpolants. The algorithm
is intrinsically parallelizable and has potential applications to isosurface extraction.
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Chapter 1

Introduction

Scientists and engineers are increasingly using higher-order FEM simulations. Consider, as an exam-
ple, the hp-adaptive variant [3] of finite element methods for which Nektar++ [5], Concepts [37], and
Hermes [39] are three among many existing open source software packages and libraries. These meth-
ods rely on piecewise polynomial approximations, using elements (possibly curvilinear) of variable
size h and polynomials of order p within an element. Higher order elements are suitable for efficient
parallel implementations and allow for higher numerical accuracy and convergence than linear basis
functions by either adaptively reducing the element’s size h, by increasing the polynomial order p, or
by combining both approaches. For an equivalent number of degrees of freedom, one can obtain the
same level of accuracy with fewer elements.

Data in science and engineering applications is often available as a scalar field. Scalar fields are
real-valued functions, which provides a way of visualizing the data.

In this thesis, we study piecewise higher-order scalar functions defined on planar or curvilinear
elements representing 2-manifold geometries.

1.1 Motivation and related work
Whereas higher-order discretizations have become a widely accepted tool for many applications, vi-
sualization techniques have to adapt and better exploit the non-linear and often polynomial nature of
the data sets. Standard visualization techniques such as contouring, volume rendering, and topology-
based methods assume the basis functions to be linear. These methods first create compatible linear
approximations of the geometry as well as of the higher-order data generally through adaptive tes-
sellation [25, 35] in order to increase numerical accuracy and topological fidelity. Since the basis
functions used to represent geometry and the attribute field functions are not necessarily the same nor
of same polynomial order, accurate tessellation is a challenging task [38]. Further, the use of high
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Figure 1.1: (a) A 2D scalar field with two maxima (red) in the interior, two maxima on the boundary,
one minimum (blue) in the interior, and three minima on the boundary. (b) Contour tree of the scalar
field, whose nodes are exactly the critical points of the scalar field.

sampling density increases memory usage and may still introduce error.
In recent years, many visualization techniques for higher order fields have begun to emerge [13,

47, 30, 38, 28, 32, 31]. Whereas these contouring, particle tracking, and rendering techniques for
higher-order data seek for improving numerical accuracy of the visualization, topological fidelity is
equally important. Indeed, topology-based methods are important for analysis and visualization of
scalar data, since they provide abstract representations of key features in the data.

Our focus is on the computation of contour trees. The contour tree captures significant topological
features of a data set by computing the nested relationships between the connected components of
level sets in a scalar field, as illustrated in Figure 1.1. Contour trees are widely applied in the context of
volume visualization – for efficient computation of isosurfaces [43], transfer function design [21, 40,
45, 48, 18], and for effective and flexible exploration of isosurfaces [8]. The application of contour tree
to volume data analysis such as feature extraction and tracking [4, 46, 19], symmetry and similarity
detection [42, 36] is also clearly demonstrated.

Many efficient algorithms have been proposed for computing the contour tree for two- and three-
dimensional scalar fields [15, 43, 41, 7, 11] and considerable efforts have been undertaken to develop
parallel implementations [33, 27, 26, 1, 9, 24]. However, these methods typically suppose the data
being sampled at the mesh/grid vertices and varying linearly along the edges. In this paper, we tackle
the problem of computing contour trees specifically dedicated to higher-order interpolants without
falling back to linear approximations of the data.
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Dillard et al. [16] described a method to compute the contour tree for quadratic interpolants.
They proceed by first tessellating a triangle in the input mesh into monotone triangles and then apply
classical methods for contour tree computation. This method does however not scale to higher order
elements because it requires a case analysis for computing the tessellation. This case analysis is
cumbersome already for quadratic interpolants. Pascucci and Cole-McLaughlin [33] and Acharya
and Natarajan [1] describe parallel algorithms to compute the contour tree for piecewise trilinear
interpolants over a 3D grid. Minima and maxima are restricted to vertices of the grid and there are
only four possible join/split tree configurations. Both methods compute the join and split trees for a
single grid cell by looking up a case table and stitch them together. Carr and Snoeyink [6] propose
an abstract framework for handling interpolants of arbitrary order and design a finite state automaton
for computing the contour tree. This framework was employed either explicitly or implicitly for
computing the contour tree in parallel for both trilinear interpolants [33, 1] and for piecewise linear
interpolants [27, 26]. These algorithms used combinatorial routines to compute the tree corresponding
to an individual cell. Such an approach is not feasible for higher order interpolants. Our method may
be considered as the first concrete realization of this abstract framework for higher order interpolants.

1.2 Summary of results
Our algorithm has two phases: local and global. The local phase computes the contour tree restricted
to a single triangle by exploiting the monotone connectivity of critical points within an element.
Inspired by the approach from Chiang et al. [11], we compute monotone paths on the polynomial
function to connect the critical points inside an element. This leads to an advantageous dimension
reduction of all involved sub-problems because the restriction of a bivariate polynomial function to
a specific direction reduces to a univariate polynomial. The global phase stitches together the local
trees and hence produces the contour tree.

This algorithm may be considered as a hybrid approach between the monotone path tracing al-
gorithm of Chiang et al. [11] and the two-pass union-find based algorithm of Carr et al. [7]. Both
algorithms have to be suitably extended to be made applicable to higher order polynomials. Our al-
gorithm finally combines the advantages of both approaches. The algorithm of Chiang et al. is output
sensitive and does not require processing all sample points. It is appropriate for our local tree com-
putation because we enjoy the benefit of sampling the polynomial only along the monotone paths as
opposed to sampling uniformly over all triangles. The global stitching procedure is a combinatorial
and computationally efficient algorithm.

Our algorithm is designed to work for any higher-order interpolant. We demonstrate the effective-
ness of our approach with an implementation for piecewise-polynomials of degree two,three and five.
We also performed experiments on real-world scientific data obtained using COMSOL [12] and we
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present our findings in Chapter 5. We back up our claims regarding the advantages of using higher
order interpolants by evidences obtained from experiments performed on various synthetic datasets
of different degrees of interpolation.

a

b

d f

gh

i j

k

l

m

(a)

a

b

c d

e h

i

k

l

m n

(b)

Figure 1.2: Join tree (a) and split tree (b) of the function described in Figure 1.1. The contour tree is
the union of the join and split trees.

1.3 Contributions
Following are the major contributions of the thesis.

• We propose a novel algorithm to compute contour trees for 2D piecewise polynomial functions
of any degree of interpolation.

• We prove correctness and running time complexity for the proposed algorithm and showcase
results obtained by a basic implementation.

• We demonstrate the advantages of higher order polynomial functions over their linear counter-
parts by a series of case studies and observations done over real and synthetic datasets respec-
tively, of different degrees of interpolation.

1.4 Organization
We discuss the concepts and definitions required for understanding the thesis in Chapter 2. We present
our proposed algorithm with apt illustrations, detailed pseudocode and rigorous analysis in Chapter 3.

4



Chapter 4 gives insight into the implementation specific details such as, programming language, li-
braries and software tools used. Chapter 5 enumerates implementation details and experimental re-
sults. It also illustrates interesting case studies and observations. The gist of a prior work which tried
to solve the same problem by analyzing all combinatorial cases of critical point types is presented in
Chapter 6. Finally, Chapter 7 concludes the work presented in the thesis.
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Chapter 2

Background

In this chapter, we introduce the necessary background needed to understand the rest of the thesis.
Specifically, we define terms like level set, contour, critical point, Morse function, etc.

Let M be a d-manifold with or without boundary. Let f : M −→ R be a smooth (C∞ differ-
entiable) real function. A point p ∈M is called a critical point if ∇ f (p) = 0. Figure 2.1 shows
minima/maxima/saddle occuring on the surface of a triangle with a bi-quadratic polynomial function
defined on it. A minimum has the lowest function value in its local neighbourhood. Similarly, a
maximum has the highest function value in its local neighbourhood.

(a) (b) (c)

Figure 2.1: (a) Minima. (b) Maxima. (c) Saddle

A critical point at which the Hessian matrix is non-singular is called a non-degenerate critical
point. The function f is said to be a Morse function [29] iff:

• its critical points are non-degenerate and lie in the interior of M,

• the critical points of f restricted to the boundary of M are non-degenerate,

6



• the critical values (values of f at critical points in the interior and the boundary of M) are
distinct.

A level set is the preimage f−1(c) of a real value c chosen from the range of f , which is called
an isovalue. The connected components in a level set are called contours. The quotient space of M
by the equivalence relation “a relates to b if a and b lie within the same contour” is a graph called the
Reeb graph [34]. If the domain M is simply connected (genus 0) then the Reeb graph is acyclic and
called the contour tree.

Nodes in a contour tree correspond to critical points of f . Maxima and minima are leaves of the
tree, while index-1 and index-(d-1) saddles are degree-3 nodes. This follows from the fact that f is a
Morse function and hence all critical points are non-degenerate. Two level set components merge at
an index-1 saddle. Similarly a level set component splits into two at an index-(d-1) saddle. In order to
explain the structure of the contour tree, it is convenient to use the metaphor of contours ‘appearing’,
‘disappearing’ or ‘merging’. A contour appears when the isovalue increases past the critical value of
a minimum. A contour disappears when the isovalue increases past the critical value of a maximum.
When the isovalue increases past the critical value of a saddle, either one contour splits into two or two
contours merge into one. Figure 1.1 shows a 2D function and the corresponding contour tree. Nodes
colored red, blue, and green correspond to maxima, minima, and saddle, respectively. The contour
tree provides the user with direct insight into the topology of all level sets and reduces the time
required to understand the topological structure of the data. The join tree and split tree illustrated
in Figure 1.2 are defined in a manner analogous to the contour tree, by considering respectively the
sub-level sets (pre-image of f−1(−∞,c]) and the super-level sets (pre-image of f−1[c,+∞)). They
are useful intermediate structures for computing the contour tree as explained in Section 3.2 and
Section 3.6.

7



Chapter 3

Algorithm

In this chapter we describe an algorithm for computing the contour tree of a 2D piecewise polynomial
function.

3.1 Input
The domain is represented by a triangle mesh of genus 0. We require the input data to be continuous
across the domain so that the level sets are also continuous, see Figure 3.1. The polynomial interpolant
is specified by a set of samples in each triangle. We use the word patch to refer to a triangle together
with the polynomial interpolant as specified by the set of samples. A sample is specified by two pa-
rameter values for the location and one function value. The number of samples depends on the degree
of the polynomial function. For example, a polynomial of maximal degree 2 is defined by 6 samples,
whereas a maximal degree-3 polynomial requires 10 samples. If required, the monomial coefficients
of the polynomial may be computed from the samples by solving a linear system. Typically, three
samples are located at vertices of the triangle. The location of the remaining samples depends on the
particular finite element implementation. Figure 3.1b shows a quadratic polynomial defined by six
sample points (black). For comparison, the piecewise linear interpolant defined by the same set of six
sample points is shown in Figure 3.1a. Figure 3.1d shows two quadratic patches defined by 6 sample
points each. The functions are continuous across the common boundary as the continuous isolines
indicate. The geometry of the element may also be modeled as a polynomial function, possibly of
different order than the attribute data. In this case, a second set of samples is required, consisting of
two parameter values and a 3D position per sample.

8



(a) (b) (c)

(d) (e)

Figure 3.1: Linear and higher order interpolation over a triangle for a function sampled at multiple
points (black). (a) Linear interpolation within each of the four triangles obtained by subdividing
the input triangle. (b) Quadratic polynomial function interpolating the sample points. (c) Cubic
polynomial function interpolating 10 sampling points. (d) Piecewise continuous quadratic polynomial
sampled at 6 points each over two triangles. (e) Piecewise continuous cubic polynomial sampled at
10 points within each triangle. Isolines are continuous across common boundary.

3.2 Overview
The algorithm proceeds by building the local join and split tree of a patch independent of other
patches. A local join tree captures the connectivity of sub-level sets of a patch, where topology
change events are associated with local minima and join saddles. Similarly, the local split tree cap-
tures the connectivity of super-level sets of a patch. Topology change events here are associated with
local maxima and split saddles. The local join trees of adjacent patches are stitched together to obtain
the global join tree of the input scalar field. Similarly, the local split trees are stitched together into the
global split tree. Finally, the global join and split trees are merged using an efficient tree merge pro-
cedure to obtain the desired contour tree of the input scalar field. Essentially, the algorithm contains
four steps:

9



(a) (b) (c)

(d) (e)

Figure 3.2: Illustration of path tracing for a monotone descending path.

1. Compute critical points for each patch.

2. Generate local join tree and split tree for each patch.

3. Stitch local join trees together to obtain the global join tree. Stitch local split trees to obtain the
global split tree.

4. Merge the global split and join trees together to obtain the contour tree.

Prior to processing a patch, we apply a rigid body transformation that moves the triangle to the XY-
plane. This transformation simplifies future numerical computations without affecting the topology
of the level sets and hence the local join and split trees.

3.3 Critical points of a patch
The critical points of a 2D polynomial are computed by solving for the roots of a polynomial system
given by the two partial derivatives. Analytic methods are not available to compute roots of such a
polynomial system, particularly for higher degrees. We use PHCpack [44] for computing the roots
of the polynomial system. PHCpack uses homotopy continuation methods and provides exact roots

10



whenever they are computable and numerically approximate solutions when the root finding is in-
tractable. The method reports points lying in the interior of the triangle. Line-critical points, defined
as critical points lying on the triangle boundary, are identified by first computing the restriction of the
polynomial to each bounding line. Note that the restrictions are univariate polynomials.

3.4 Local join and split trees
The critical points computed in the previous step together with the triangle vertices constitute the
potential nodes of the local join and split tree of a patch. We next compute the arcs of these local
trees. Below, we describe the algorithm for computing the local join tree (Algorithm 1). The local
split tree is computed using a similar procedure. The algorithm assumes that the polynomial f defined
on a triangle together with the set of its critical points is available as input.

Most methods to compute the join tree for piecewise linear functions explicitly track the connected
components of sub-level sets during a sweep over the domain and process all vertices of the input
mesh [7, 19]. This approach does not extend well to higher order interpolants due to two reasons.
First, the critical points of a piecewise linear function are necessarily located at vertices of the input
mesh and hence it is sufficient to process vertices of the mesh. However, the critical points of a higher
order polynomial interpolant may lie in the interior of the triangle. Second, computing the level sets
for higher order interpolants is challenging both in terms of the computational cost and numerical
accuracy. We instead employ an approach that directly computes the downward arcs incident on a
join tree node. The potential nodes of the join tree are processed in increasing order of function value
and the downward arcs incident on it are identified by following monotone descending paths from
the corresponding critical point / triangle vertex. A monotone descending path (MDP) is a path in
the patch along which the value of f decreases monotonically. The path originates at a critical point
/ triangle vertex and terminates at a different critical point / triangle vertex or merges into another
descending path. The MDP terminates in the sub-level set component that contains its origin. Hence,
the MDP helps determine the downward arcs from the corresponding join tree node.

The critical points and triangle vertices are processed in increasing order of value of f . We main-
tain a forest of join trees containing all critical points and vertices processed so far. When the next
critical point or vertex c is processed, the forest is updated to include c. The local neighborhood of c

is classified into regions where f assumes values lower or higher than f (c). This classification deter-
mines the number of MDPs traces from c. If an MDP terminates at a critical point c′ then we insert
an arc from c to the root of the tree containing c′. Alternatively, if the MDP intersects a previously
computed MDP, say originating at c′′, then we insert an arc from c to the root of the tree containing
c′′. The forest of trees is stored as a union find data structure [14]. After all critical points and vertices
are processed, the forest consists of a single tree rooted at the global maximum of the patch. This tree
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is the local join tree of the patch.
Monotone path tracing. Computing the exact geometry of a monotone path is computationally
challenging. However, it is sufficient for our purposes to compute sample points on the path. We
represent an MDP as a piecewise linear curve and store it as a finite collection of points [x0,x1, . . . ,xk].
Here, x0 is the source critical point, xk is the terminal point, and f (xi+1) < f (xi). We now describe
how an MDP is traced. Ensuring numerical accuracy while reducing computational costs makes this a
challenging problem. In particular, (a) appropriate number of MDPs needs to be traced from a critical
point / triangle vertex, (b) the tracing procedure should ensure the monotone property, and (c) the
terminal point should be recognized correctly.

We reduce all numerical computations to root finding on univariate polynomials, thereby simplify-
ing the computation. We use GNU Scientific Library for processing the univariate polynomials [22].
We first compute disjoint axis-aligned bounding boxes for all the critical points and vertices, to facili-
tate the identification of the number of MDPs originating at them. Chattopadhyay et al. [10] show that
these boxes always exist. In practice, we compute boxes with diagonal length smaller than dmin, the
minimum distance between critical points / triangle vertices. Assuming that f is a Morse function, the
local neighborhood may be partitioned into sectors with values of f alternating between higher and
lower than f (c). We compute the restriction of f to the boundary of the bounding box Rc. This restric-
tion is a univariate piecewise polynomial function fRc . Roots of fRc− f (c) partition the boundary of
Rc into segments. If there are more than four roots then we compute a smaller bounding box by halv-
ing the diagonal length. Choose a point s within each segment and initialize an MDP [x0 = c,x1 = s]

if f (s) < f (c). Next, compute the restriction of f to the ray along the negative gradient direction at
s. This restriction is also a univariate polynomial, say fs. The minimum of fs closest to s is inserted
as the next point x2 of the MDP. This process is repeated to compute subsequent points xi on the
MDP. This iterative procedure terminates either when xi lies in the interior of the bounding box of a
critical point / triangle vertex c′ or when xi−1xi intersects a previously computed MDP. The iterative
procedure indeed computes a monotone descending path because the gradient at xi is non-zero and
hence f (xi+1)< f (xi). So, it always terminates by reaching the interior of the bounding box of either
a minimum or another critical point.
Example. Figure 3.2 illustrates the tracing of an MDP p from a critical point c1 in a triangle. All
the critical points of the patch are shown in red. The bounding box is shown only for critical points
c1 and c2 to reduce clutter. The direction of steepest descent is shown using the arrow glyph. The
polynomial f defined on the triangle is restricted to a ray along the steepest descent (Figure 3.2(b),
shown in blue). Let r be the closest minimum of the resulting univariate polynomial. In this case, the
point r lies outside the boundary of the patch. The univariate polynomial decreases monotonically
until r. So, the point of intersection of the ray with the triangle boundary is chosen as the next point,
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x2 on the MDP. When an MDP reaches the triangle boundary, it is restricted to the boundary for
simplicity. The steepest descent direction on the boundary is computed at x2, shown using an arrow
glyph in Figure 3.2(c). Next, the univariate polynomial along the blue ray is computed followed
by locating the closest minimum r, see Figure 3.2(d). The tracing stops because r lies within the
bounding box of c2. The resulting path is p = [x0 = c1,x1 = s,x2,x3 = c2].

3.5 Global join and split trees
The local join trees are stitched together resulting in the global join tree. Similarly the global split tree
is computed by stitching the local split trees. The stitching procedure is similar to the one proposed by
Acharya and Natarajan [1]. We describe it here for completeness, see also Algorithm STITCHJOIN-
TREES. The sorted list of nodes of two input join trees are merged into a single sorted list. Duplicate
nodes from the boundary of the two corresponding sub-domains lie adjacent to each other in the sorted
list. An edge is inserted between every pair of duplicate nodes, resulting in a single connected graph
that may contain cycles. The stitched join tree is computed by sweeping the graph in increasing order
of function values and tracking connected components of subgraphs using a union-find data structure.
Repeated application of the stitching process on all local join trees and on intermediate stitched trees
results in the global join tree.
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Algorithm 1: BUILDLOCALJOINTREE
Input: Polynomial function f defined on a triangle that lies on the XY plane
Input: Set C of critical points(CP) and triangle vertices. Min distance, dmin, between CPs.
Output: Local join tree JT
/* Let P denote the set of monotone descending paths(MDP). Each p ∈ P is of

the form [x0,x1, . . . ,xk], where x0,xk ∈C. */
/* Let Rc denote the bounding box(BB) of a point c ∈C. */
/* Let S denote the set of starting points of MDPs. */
/* Let UF denote a union-find data structure to store collection of points

in C. */
1 Initialize the node set of JT to C
2 Initialize UF ←− /0, P←− /0
3 for each c ∈C in ascending order of function value do
4 NewSet({c},UF)
5 Compute an axis parallel bounding box, Rc with c as center and diagonal length dmin
6 Compute roots of f restricted to the boundary of Rc
7 Compute the collection S of points s between pairs of adjacent roots on the boundary of Rc that satisfy the

condition f (s)< f (c)
8 for each s ∈ S do
9 Start a monotone descending path p, initialize it to [c]

10 Set x1←− s, i←− 0
11 repeat
12 Set i←− i+1
13 Append xi to p
14 Compute fi, the restriction of f to the ray along the negative gradient of f at xi
15 Set xi+1 as the minimum of fi that is closest to xi

16 until xi+1 lies within Rc′ for some c′ ∈C OR the line segment xixi+1 intersects a path p′ ∈ P;
17 if xi+1 lies within Rc′ then
18 Append c′ to p
19 Add p to P
20 Add edge cc′ to JT
21 Union(c,c′,UF)

22 end
23 if xixi+1 intersects a path p′ ∈ P at a point x then
24 Append x to p
25 if x is not a point in the representation of p′ then
26 Insert x into p′ at the appropriate location
27 end
28 Add p to P
29 Let c′ denote the source critical point for p′

30 if c 6= Find(c′,UF) then
31 Add edge (c, Find(c′,UF)) to JT
32 Union(c,c′,UF)

33 end
34 end
35 end
36 end
37 Return JT
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Algorithm 2: STITCHJOINTREES [1]
Input: Join trees JT1 and JT2 for two sub-domains that have a common boundary
Input: List of nodes of the two trees N1 and N2 sorted in ascending order of function value
Output: Stitched join tree JT

1 Initialize JT ←− JT1∪ JT2

2 UF ←− /0
3 N←−Merge(N1,N2) for (i←− 1to|N|−1) do
4 if vi and vi+1 are redundant nodes on the common boundary then
5 NewSet(vi,UF)
6 NewSet(vi+1,UF)
7 Union(vi,vi+1,UF) making vi+1 as the head
8 JT.vi.Parent←− vi+1

9 Add vi to JT.vi+1.ChildrenList

10 end
11 for (each child c j of vi) do
12 if c j is present in UF then
13 if vi is present in UF then
14 NewSet(vi,UF)
15 end
16 Delete c j from JT.vi.ChildrenList
17 c′←− FIND(c j,UF)

18 if vi 6= c′ then
19 JT.c′.Parent←− vi

20 Add c′ to JT.vi.ChildrenList
21 Union(c′,vi,UF) ensuring vi as the head

22 end
23 end
24 end
25 end

26 Return Stitched join tree JT

3.6 Contour tree
The global join and split trees are merged using Algorithm 3 resulting in the global contour tree [7].
This merge step is also described in previous work. For completeness, the merging procedure is
described in Algorithm MERGEJOINANDSPLITTREE in the supplementary material. The algorithm
maintains a set L of leaf nodes in the join and split trees and processes them in sequence. If the current
leaf node under consideration, say l, is an unprocessed non-root node then the edge between l and its
parent from the appropriate tree is added to the resulting contour tree. After processing, l is deleted
both from the list L and the join/split tree that contained it. If this deletion results in the parent of l to
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become a leaf node , then that node is inserted into L.
Algorithm 3: MERGEJOINANDSPLITTREE [1]

Input: Global join tree JT and split tree ST
Output: Contour tree CT

1 L←− Set of leaves in JT and ST
2 while L 6= φ do
3 if l is a leaf in JT or ST then
4 Process l and remove it from L
5 T = tree in which l is a leaf
6 while l 6= T.root and l is not processed do
7 n = l
8 l = parent vertex of l in T

9 end
10 Remove n from T and L
11 Add arc(n, l) to CT
12 if l is either a leaf in JT or ST then
13 Add l to L
14 end
15 end
16 end

3.7 Degeneracies
A patch that contains at least one non-isolated critical point is said to be degenerate. Figure 3.3(a)
shows a degenerate function defined on a triangle. All points on the line c1c2 are local maxima.
The function in this case is not Morse and hence the above algorithm does not apply. In particular,
individual critical points cannot be isolated and the MDP tracing fails due to the presence of zero
gradient regions. We compute the local join and split tree for the degenerate patch by subdividing it
into smaller triangles and assuming linear interpolation within each smaller triangle. The degenerate
patch is processed as follows. First, compute the line-critical points of the patch and insert them as
vertices. Next, compute a triangulation of the set of triangle vertices and the newly inserted vertices.
This triangulation subdivides the interior of the degenerate patch into smaller triangles. For example,
Figure 3.3(b) shows the decomposition of the patch into three triangles. Assume linear interpolation
within each triangle and compute the local join tree and local split tree of the patch using the sweep
algorithm [7]. Inserting the line-critical points ensures that the subsequent stitching step applies to all
patches, degenerate or otherwise, without modification.

16



(a) (b)

Figure 3.3: (a) A degenerate patch. (b) Subdividing the patch into triangles after inserting all line-
critical points. The local join tree and local split tree is computed by assuming piecewise linear
interpolation within each smaller triangle.

Notice that we only compute line critical(LC) points in case of degenerate patch. We claim that,
any degeneracy in the polynomial function on the patch has to extend till the boundary of the triangle,
which is in turn captured by the LC points as shown in Lemma 3.1 and Lemma 3.2.

Lemma 3.1 If a bivariate polynomial function f is constant over a non-empty open subset Ω of R2,

then f is constant over R2.

Proof: Let x0 ∈Ω. The Taylor expansion of the polynomial function f at x0 is

f (x) = f (x0)+
k=N

∑
|k|>0

∂
k f (x0)

(x−x0)
k

k!
,

where we use the multi-index notation, and N = (N1,N2) is the degree of f . Since f is constant within
a neighborhood of x0, we must have ∂ k f (x0) = 0,∀k. From the Taylor expansion of f , we conclude
that f is constant over R2. 2

Lemma 3.2 If a bivariate polynomial function f is constant over a non-empty line segment I in R2,

then f is constant over its supporting line l(I).

Proof: Let x0 and x1 be two distinct points in I. Define a univariate polynomial g such that g(s) =

f (x0 + s(x1− x0)) for s ∈ R. The polynomial g is constant over a non-empty open interval. An
analogous argument as in the proof of the previous lemma implies that g is constant over R. Therefore,
f is constant over the line l(I). 2
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3.8 Correctness
We claim that the tree computed by the above algorithm is the contour tree of the piecewise-polynomial
input. If the MDPs are computed accurately from all critical points of a patch then Algorithm 1 indeed
computes the local join tree [11]. The algorithm traces all MDPs from a critical point as shown in
Lemma 3.3. Degenerate patches are also processed correctly. If a patch contains a non-isolated criti-
cal point then the degenerate region extends to the boundary as shown in the appendix, see Lemma 3.1
and 3.2. If the degenerate region is a curve then the corresponding line-critical points are included,
else the entire patch is flat. In either case, all critical points are included into the join tree and the
degenerate patch is processed correctly.

Lemma 3.3 Let f be a bivariate polynomial Morse function and let c be a critical point of f . Algo-

rithm 1 traces at least one monotone descending path from each connected component of the lower

neighborhood N−c of c.

Proof:

(a) (b)

Figure 3.4: (a) Bounding box Rc for a critical point c showing its neighborhood Nc. (b) A box
containing c, which is larger than the required bounding box.

The bounding box is chosen such that no other critical point lies within it. First, assume that the
bounding box Rc is small enough that the level set f−1(c) intersects the boundary of Rc exactly zero
times (for minima and maxima) or four times (for saddle critical points). In this case, Algorithm 1
clearly traces 0, 1, and 2 MDPs for minima, maxima, and saddle critical points, respectively. Further,
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the path is indeed an MDP because there exists a descending path from c to the point s on the boundary,
namely the gradient descent path (see Figure 3.4(a)).

Let us now consider the case when the above assumption is not true. If c is a minimum or max-
imum and f−1(c) intersects the boundary of Rc then there exists another critical point within Rc, a
contradiction.If c is a saddle point, then a configuration as shown in Figure 3.4(b) may arise. In this
case, fRc− f (c) will have more than four roots and the algorithm finds a smaller bounding box. 2

3.9 Analysis
We now analyze the run time of the contour tree algorithm beginning with Algorithm 1. Let nc denote
the number of critical points in the patch. Sorting the critical points takes O(nc lognc) time. Assuming
that the function is Morse, a constant number of MDPs are traced for each critical point resulting in
O(nc) Find and Union calls. This takes O(ncα(nc)) time. Let np denote the maximum number of
segments in an MDP. Checking for intersection with previously computed MDPs takes O(n2

cn2
p) time

and is the costliest step in the MDP tracing procedure. So, Algorithm 1 takes O(n2
cn2

p). Let nt denote
the number of triangles in the input. Stitching the local join trees takes results in O(ntnc) Find and
Union calls, which takes O(ntncα(ntnc)) time. Computing the global split tree also takes the same
time. The global join and split tree can be merged in linear time on the total number critical points,
which is O(ntnc). For a degree d polynomial, nc ≤ d− 1. So, the total time to compute the contour
tree is dominated by the MDP tracing, which is O(ntd2n2

p).
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Chapter 4

Implementation Details

In this chapter, we discuss some of the implementation specific details like, the coding language used,
libraries used and tools used to visualize and generate data.

Computing local join/split trees for a patch, stitching the join/split trees and finally merging global
join/split tree, all these procedures are implemented in C++. We use Python3.4 for generating scripts
for extracting 2D surface out of 3D datasets, reading datasets and file format conversion. We list
below, the libraries that we used along with their purpose. We analyzed and performed experiments
on these libraries to check sanity and the suitability for our application.

• The open source C++ library Eigen [23] is used for finding the solution of a system of linear
equations

• The GNU Scientific Library [22] is used for finding the roots of a univariate polynomial

• PHCpack [44] for finding roots of a polynomial system.

To visualize the final computed contour tree and to generate and visualize contour tree for piece-
wise linear approximations, we use a in-house developed tool called as TopoView [2]. It shows the
tree in a hierarchical fashion, called as branch decomposition view, from which the significance of a
critical point can be made out. Figure 4.1a shows a screenshot of the tool. Left half is meant to render
the data and right half is for showing contour tree.

A powerful data visualization and exploration tool Paraview [17] is used for generating the result
images. It provides a vast range of filters, which aid in generating meaningful and visually appealing
images. Some of the commonly used filters are listed below.

• Contour is used for showing contour curves.

• Glyph is used for highlighting critical points using spheres.
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(a) (b)

Figure 4.1: (a) Topoview tool. (b) Paraview tool.

• Tube is used for highlighting contour curved using cylinders.

• Clip is used to clip away parts of the dataset to show culled regions.

A screen shot of the paraview tool showing a synthetic data is shown in Figure 4.1b. Clip filter is
used to clip away the occluding surface.
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Chapter 5

Experimental Results

In this chapter, results of computational experiments done on datasets with 2D piecewise-polynomials
of degree two,three and five are presented. The contour tree computed by the algorithm contains all
vertices of the input mesh as nodes. Hence, the output is the so-called augmented contour tree. In our
implementation, the degree-2 nodes are pruned away. They may be retained if required.

5.1 Conductor
The thermal conductor dataset represents the temperature distribution at the surface of an electronic
component computed by solving a multi-physics simulation using COMSOL [12]. The elements are
polynomials of maximal degree 2. The six samples are located at the triangle vertices and at the
mid-point of the edges, as shown in Figure 3.1b. For this dataset, the geometry of the elements is also
modeled as a quadratic polynomial that accurately fits the curved surface. Figure 5.2a-5.2c shows the
temperature field, its critical points together with a set of contours, the contour tree computed using
the proposed algorithm. A topological feature is represented by a min-saddle or max-saddle arc /
path in the contour tree. The size of a topological feature is measured using the notion of topological
persistence [20], which is equal to the difference in function value at the pair of critical points.
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Figure 5.1: Top of the conductor contains multiple degeneracies. The algorithm identifies all the
critical points and handles the degenerate patches gracefully.

The contour tree contains 530 nodes, several of them corresponding to small-sized topological
features. Given a persistence threshold the contour tree may be simplified by iteratively removing
arcs incident on leaf nodes [8]. Figure 5.2d shows the contour tree simplified using a persistence
threshold of 0.1%. The temperature field contains multiple degeneracies, particularly on the top plate
as shown in Figure 5.1. Our algorithm handles all degenerate patches gracefully and computes the
contour tree. The simplified tree shows the two significant maxima located at the center of the two
legs surrounded by a few low persistence maxima. Note that the tree contains two similar subtrees as
expected. The subtrees correspond to the symmetric legs of the conductor.

5.2 Heater
The heater dataset is a sum of Gaussian function sampled on the surface of a heater. Each triangle
in the mesh representing the heater surface contains ten sample points. Three samples are located at
the vertices, two within each edge subdividing it into equal sized segments and one at the barycenter.
A polynomial of maximal degree 3 interpolates the ten samples. Figure 5.3a-5.3d shows the cubic
function, its critical points together with a set of contours, the contour tree computed using our algo-
rithm, and the contour tree simplified using a persistence threshold of 0.5%. Gradient computation
and root finding are costlier for the cubic interpolant. However, the use of univariate polynomials to
trace monotone paths and the use of bounding boxes helps resolve several numerical issues. This data
again contains multiple degenerate patches. All degeneracies are gracefully handled.
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5.3 Sphere
Cubic-sphere dataset is generated by defining a sum of sine field on a sphere triangulation, as shown
in Figure 5.4a. It is a piecewise-cubic dataset with 1056 triangles. Figure 5.4b shows the contours
and critical points for Figure 5.4a. As the function is symmetric and almost all of the critical points
are of high persistence, contour tree, having 136 nodes,in Figure 5.4c has equal number of maxima
and minima. On 0.5 percent simplification, the contour tree reduces to a tree with 110 nodes. Most of
the nodes are retained because of their significant persistence, Figure 5.4d.

5.4 Two triangle
A toy dataset having a piecewise polynomial function of order 5 defined on two adjacent triangles
sharing an edge is shown in Fig 5.5a. For each triangle, there are total 21 samples. Three on the trian-
gle vertices, four samples each on the triangle edges and six samples inside the triangle. This dataset
has been generated just to showcase the scalability of our algorithm across degree of interpolation. To
compute the contour tree, we make 2 calls to local tree computation procedure and a single stitch pro-
cedure. Contour lines and the critical points of the dataset are shown in the image Fig 5.5b, observe
that, there are 11 critical points inside the triangle boundary and are detected with high accuracy by
PHCpack routines, contour line behaviour confirms this. The computed contour tree for this dataset
has 37 critical points and all the critical points are of high persistence. Fig 5.5c shows the computed
contour tree mapped on to the dataset and Fig 5.5d shows the branch decomposed contour tree.

5.5 Case-studies
We present three additional case studies in Figure 5.6, Figure 5.7 and Figure 5.8. where we compare
the contour tree computed for the higher order interpolants with the contour tree of PL-approximations
of the datasets. The PL approximations are produced by applying a uniform refinement on the input
triangulation and linearly interpolating the polynomials on the refined triangles.

5.5.1 Conductor
Figure 5.6 compares the contour tree of a piecewise quadratic function with the contour tree of piece-
wise linear (PL) approximations. The PL approximations are computed by applying a uniform refine-
ment on the input triangulation and by linearly interpolating the polynomials on the refined triangles.
There are large differences between the contours of the original data and those of the PL approxima-
tions even after a high level of refinement. A close-up view shows how the topology of the contours,
and thus the contour trees, differ. The visual comparison indicates that a higher order interpolant can
capture all topological features even if the surface is discretized using fewer number of triangles. The
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PL approximation is not able to accurately capture the level set topology even with a 15-fold increase
in number of triangles. For example, the number of detected critical points in PL approximation with
4298 triangles, shown in Figure 5.6b are less compared to the piecewise-quadratic case, shown in
Figure 5.6e. Although number of critical points in PL approximation with 17192 triangles, shown in
Figure 5.6c are at least as much as the number of critical points in piecewise-quadratic case, notice
the error in critical point position as compared to the true positions. PL approximation with 68768,
shown in Figure 5.6d, captures all of the critical points as that of its piecewise-quadratic counterpart.
Some new low persistent minima are reported due to the degeneracy caused by smaller triangles. Also
notice that the critical point positions in Figure 5.6d are still different from the true positions. Change
in the topology of the contours, and thus also the contour trees shown in Figure 5.6g-Figure 5.6j differ
between the PL approximation and the original polynomial datasets. Notice that the section of the
contour tree shown in Figure 5.6(i) contains more number of maxima than Figure 5.6(j). However,
these additional maxima are introduced due to flat regions and have zero persistence.

5.5.2 Heater
Figure 5.7 compares the contour tree of the piecewise cubic function defined on the heater dataset
with the contour tree of its PL approximations. The contours of the PL approximation is significantly
different from that of the piecewise cubic function defined on an equal number of triangles. A 10-fold
increase in number of triangles seems to be necessary to obtain similar contours. Notice the large
differences in critical point position and number in PL approximation with 12438 triangles, shown in
Figure 5.7b as compared to the piecewise-cubic counterpart in Figure 5.7d. PL approximation with
111942 triangles captures the critical point position better but misses out on some of the close-by
critical points, in Figure 5.7c, a close-by maxima is missed.

5.5.3 Sphere
A Similar case study has been performed on cubic-sphere dataset as well in Figure 5.8. Figures 5.8a,5.8d
and 5.8g show the function, contour lines and critical points, and contour tree for a PL approximation
with 1056 triangles. Note the significant differences in the position and number of critical points. A
PL approximation with 9504 triangles,Figures 5.8b,5.8e and 5.8h gives matching results as that of its
piecewise-cubic counter part with 1056 triangles Figures 5.8c,5.8f and 5.8i. They have same number
of critical points but there are differences in the positions of these critical points.

5.6 Running Time
The focus of the current implementation was on correctness and validation of the proposed algorithm
and not on efficiency. We present in Table 5.1, the running time observed with the current sequential
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implementation. The datasets were run on a HP workstation with Intel Xeon 2 X 2 GHz processor
with 4 GB of RAM. Algorithmic and code optimizations may result in significant reduction in running
times. For example, several steps of the algorithm can be parallelized, structure of the code can be
changes to avoid writing to files. We plan to do this in future.

Table 5.1: Running Time

Dataset
Name

Degree
of In-
terpo-
lation

No. of
Vertices

No. of
Trian-
gles

Running
Time(s)

No. of
nodes in
CT (Before
Simplifica-
tion)

No. of
nodes in
CT (After
Simplifica-
tion)

Simpli
fica-
tion
%

Conductor 2 8598 4298 962.2 530 67 0.1
Gauss
simp40 2 1600 722 56.7 28 16 0.5

Heater 3 78427 12438 10678.1 268 178 0.5
Sphere 3 4754 1056 206.9 136 110 0.5

2-Triangle 5 36 2 0.193 38 38 0.5

As evident by the Table 5.1, runtime is directly proportional to the size, degree of interpolation
and degeneracy in the dataset.
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(a) (b)

(c) (d)

Figure 5.2: Degree of Interpolation : 2. (a) Temperature distribution as a quadratic function on
the surface of a thermal conductor. (b) Critical points and contour lines. (c) Contour tree without
simplification consisting of 530 nodes. (d) Contour tree with 67 nodes obtained after simplifying
using a 0.1 percent persistence threshold.
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(a) (b)

(c) (d)

Figure 5.3: Degree of Interpolation : 3. (a) A cubic function defined on a heater geometry. (b) Critical
points and contour lines. (c) Contour tree without any persistence simplification having 268 critical
points. (d) Contour tree with 178 nodes obtained after simplifying using a 0.5 percent persistence
threshold.
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(a) (b)

(c) (d)

Figure 5.4: Degree of Interpolation : 3. (a) A sum of sine function defined on a sphere (b) Contour
lines and critical points of 5.4a. (c) Contour tree shown on the dataset without any simplification. It
has 136 nodes. (d) Contour tree after 0.5 percent simplification. It has 110 nodes
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(a) (b)

(c) (d)

Figure 5.5: Degree of Interpolation : 5. (a) Toy dataset showing a piecewise-polynomial function
of order 5 defined on two triangles sharing an edge. (b) Contour lines and critical points of 5.5a.
(c) Contour tree shown on the dataset. (d) Contour tree shown in branch decomposition form, it has
37 nodes
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Figure 5.6: (a) Piecewise linear (PL) approximation of the temperature scalar field defined in the
thermal conductor dataset shown in Fig. 5.2. (f) Contour tree for the PL approximation. (b-d) Region
of thermal conductor showing critical points and contours for successive PL subdivisions of conductor
containing 4298, 17192, and 68768 triangles, respectively. (g-i) Corresponding nodes and arcs in the
contour tree. (e) Region of conductor showing critical points and contour lines for piecewise quadratic
function with 4298 triangles. (j) Nodes and arcs from contour tree computed using proposed method
for the piecewise quadratic function
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.7: (a) Geometry of Heather dataset along with a 3d Gaussian field. (e) Heather dataset
showing the mapped 3d Gaussian field on to its surface. (b) Part of heather dataset, showing criti-
cal points computed using piecewise linear approximation having 12438 triangles.(f) Corresponding
contour tree containing 210 critical points. (c) Part of heather, showing critical points computed using
a piecewise linear approximation having 111942 triangles. (g) Corresponding contour tree with 208
critical points. (d) Part of heather showing critical points computed using a piecewise cubic function
with 12438 triangles. (h) Corresponding contour tree containing 212 critical points.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.8: (a) A sum of sine function defined on a piecewise-linear sphere with 1056 triangles.
(d) Contour lines and critical points of 5.8a. (g) Contour tree for 5.8a containing 105 nodes. (b) Same
function defined on a piecewise-linear sphere with 9504 triangles. (e) Contour lines and critical points
of 5.8b. (h) Contour tree for 5.8b containing 110 nodes. (c) Same function defined on a piecewise-
cubic sphere with 1056 triangles. (f) Contour lines and critical points of 5.8c containing 110 nodes.
(i) Contour tree for 5.8c.
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Chapter 6

Contour tree computation for
piecewise-quadratic functions using case
analysis method

In this chapter, we present another method of computing contour trees for a triangle, on which a bi-
variate quadratic polynomial function is defined. This method relies on the fact that the input function
is a Morse function. An exhaustive combinatorial analysis helps identify the appropriate contour tree
for each patch. This method does not extend easily to higher order interpolants and is superseded by
the MDP based method presented in the earlier chapters.

In the section 6.1 we describe the method for computing the contour tree in detail, and in sec-
tion 6.2 we present some of the results obtained by an efficient implementation.

6.1 Method
Our method has three major steps, they are described in detail in below subsections.

6.1.1 Enumerating all possible classes of contour trees for a patch.
Since we are assuming that the function defined on the patch is a Morse function, in the contour tree
we can only have degree 1 (maxima and minima) and degree 3 (saddle) nodes. We need an upper
bound on the number of nodes in the contour tree. We do that in the following lemma.

Lemma 6.1 There can be at most 7 critical points for a patch.

Proof: Function defined on the patch is bi-quadratic, hence it can have at most 1 surface critical
point. We will address this surface critical point as face criticality. Bi-quadratic function when re-
stricted to a line segment, will be a quadratic function in 1 variable and it could have at most 1 critical
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(a)

Figure 6.1: Possible contour trees for a piecewise-quadratic patch.

point. Since we have 3 edges, there could be at most 3 such critical points. We refer such critical
points as line criticality. Lastly, restricting the function to the triangle may cause vertices of the trian-
gle to behave as critical points. Hence in total we could have 7 critical points at most for the patch.
Since only critical points appear in contour tree, the contour tree for the patch can have 7 vertices
(1FC+3LC+3V). With these constraints, we classify all possible types of trees in 7 classes as shown
in Figure 6.1. Notice that CLASS 4 violates ’only degree 3 saddles allowed’ condition, but this is an
exception since we are considering contours local to a patch. A degree 4 saddle would in fact be a
degree 3 saddle of the global function. This type of contour tree is obtained in the presence of a face
saddle. 2

6.1.2 Enumerating all possible cases of face and line criticality [F,L]
A face criticality can either be present or absent. If present, it can be a maximum , a minimum or
a saddle. Same way, the number of line criticality can be 0,1,2 or 3. In total there are around 40
different combinatorial cases to be considered as shown in Figure 6.2.
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Figure 6.2: Enumeration of face and line criticality

6.1.3 Analyzing each case to assigning contour tree class
Each case is analyzed and mapped to corresponding contour tree class as shown in Figure 6.3. Stages
2 and 5 in Figure 6.3 make use of a set of rules. A FC appears as same type of criticality in CT, but
same doesn’t hold for LC. A maximum LC can appear as a maximum, saddle or regular vertex when
evolution of contours is considered for the whole patch, we address this as global behaviour. Stage
3 deals with this by enumerating all possible choices for types of LCs. Once we decide on global
behaviour of LC, in stage 4 we compute number of triangle vertices which are regular and make use
of this fact along with set of rules to decide the correct CT class for the case. A decision tree showing
the paths from each case to their mapped contour tree classes is designed and each case is processed
accordingly. Figures 6.4 and 6.5 show the complete decision tree. CT 1 means contour tree class 1,
CT 2 means contour tree class 2 and so on. NP means not possible. The representation [M,Mmm]
means the FC is a maximum, one LC is a maximum, and two LCs are minima.

Following are the rules, which are used for mapping a case to a contour tree class.

1. In the contour tree, sum of vertices should be even. Nmax +Nmin = Nsaddle +2. This constraint
is a direct consequence of the Morse function. Proved in Lemma 6.2.

2. If a vertex of the triangular patch is a saddle, then the patch has zero face critical points and one
line critical point.

3. A line criticality can’t appear as opposite type of criticality in contour tree.

4. Maximum number of nodes in a CT for a case [X , Y] is X +Y +3.
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5. Consider triangular patch in case [0, 3], with six critical points. The only possible contour tree
for the patch is the one where all three vertices are minima (maxima), two LCs are saddle and
one LC is a maximum (minimum).

6. There can be at most one LC which can behave as a regular point globally.

7. If all LCs are maxima (minima) then all triangle vertices are minima (maxima).

8. In cases [0, Mmm] and [0, MMm], among the LC type which dominates, one LC behaves as a
saddle globally.

9. When a FC is a maxima (minima) then no LC or vertex could be maxima (minima) in the
contour tree.

Figure 6.3: Steps to decide contour tree

Lemma 6.2 In a contour tree of a Morse function f , Nmax +Nmin = Nsaddle +2

Proof: Since contour tree is a graph, sum of degrees of the vertices is equal to twice the number of
edges.

Sum of degrees of vertices = 2 * (Number of edges)
deg(Maxima) + deg(Minima) + deg(Saddle) = 2 * (Number of edges)
Since maxima and minima are of degree 1 and saddle is of degree 3,
1*(Nmax) + 1*(Nmin) + 3*(Nsaddle) = 2 * (Number of edges)
Since contour tree is a tree, Number of edges is one less than sum of all vertices.
1*(Nmax) + 1*(Nmin) + 3*(Nsaddle) = 2 * (Nmax+Nmin+Nsaddle−1)
Hence, Nmax +Nmin = Nsaddle +2 2
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Figure 6.4: Decision tree branch 1 : No face criticality

Lemma 6.3 Case checking is exhaustive.

Proof: Above approach is exhaustive because, all possible combinatorial choices of cases are con-
sidered and analyzed. [F,0] cases where we have a face criticality and no line criticality are neglected
because that combination is not possible [16]. Some of the cases are mentioned as NP (not possible)
in decision tree, following proofs address them. In cases which are said to be not possible and the
ones where contours are elliptic, if at least one line restriction of f contains a LC point, then all LC
points are of same type (if they exist). This explains why cases mentioned below were labeled NP.

• [M , Mm]

• [M , MMm]

• [M , Mmm]
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(a)

Figure 6.5: Decision tree branch 2 : With face criticality

• [m , mM]

• [m , mmM]

• [m , mMM]

2

Lemma 6.4 If a line restriction of elliptic bivariate quadratic function f contains a criticality, then

that LC should be of same type as that of the FC.

Proof: Let say FC is a maximum and lets assume line criticality D between triangle vertices A and
B is a minimum. Line restriction of f to a line segment AB can be viewed as a plane starting at AB
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(a) (b)

Figure 6.6: (a) Proof image. (b) concave down and concave up curves

and cutting f as shown in the Figure 6.6a. Since we have assumed that the LC is a minimum, line
restriction of AB is a concave up quadratic curve. Now move the line restriction plane towards the FC
until it passes through it. By doing this we are considering line restrictions restricted to different line
segments. Among all such line restrictions consider the one which passes through the FC. This line
restriction is a concave down quadratic curve (since FC is a maximum). We notice that as we sweep
the restriction plane, curve changes from being concave up to concave down, which only happens at
a saddle. This is a contradiction to the fact that f is an elliptic bivariate quadratic function which can
only have 1 face critical point. In similar way , it can also be proved when the FC is a minimum and
LC is a maximum. Hence the lemma is true.

Lemma 2 addresses which cases listed below are NP.

• [M , m]

• [M , mm]

• [M , mmm]

• [m , M]

• [m , MM]

• [m , MMM]

We have considered all combinatorially possible cases and explained why some of the cases are
not possible. Hence case checking is exhaustive. 2

Lemma 6.5 Contour tree is correctly computed for each case.
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Proof: Once the patch is classified as a particular case, All possible global behaviour of the line
critical points are considered. Patch vertices can behave as maximum/minimum/regular vertex or
saddle (this is decided by doing some comparisons). Vertex behaving as a saddle is handled separately
(see appendix for more information). Once we decide on number and type of all criticality, all CT
classes which match the obtained specification are considered and refined based on few rules to get
the final CT for the patch. Note that obvious NP cases are eliminated and some of the cases mentioned
valid may not even be possible because of the behaviour of the bi-quadratic function, we are being
cautious and analyzing which CT class to assign in case the control ever visited that leaf. 2

6.2 Results
We present some of the results, showing a single triangle with different piecewise-quadratic polyno-
mials defined on them and the corresponding contour tree in Figure 6.7 and Figure 6.8. Images are
organized into 6 contour tree classes, for each class two scenarios are presented.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: (a) Class 1 [0,m] , (b) Class 1 [0,Mm] , (c) Class 2 [0,M] , (d) Class 2 [0,MM] ,
(e) Class 3 [0,m] , (f) Class 3 [0,mm]
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(a) (b)

(c) (d)

(e) (f)

Figure 6.8: (a) Class 4 [S,M] , (b) Class 4 [S,Mm] , (c) Class 5 [0,mmm] , (d) Class 5 [m,mmm] ,
(e) Class 6 [0,MMM] , (f) Class 6 [M,MMM]
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Chapter 7

Conclusions

We have described a novel algorithm for computing the contour tree of a 2D piecewise polynomial
scalar field that is defined over a triangle mesh. The algorithm employs efficient numerical com-
putations to trace monotone paths within each triangle. All other steps are combinatorial in nature.
Experimental results show how the algorithm can efficiently capture topological features that are not
easily identified using a linear approximation. With the increasing use of higher-order element data
in simulations, it is essential that the analysis and visualization techniques are also directly applied
on the higher-order elements. This is particularly true for topology-based visualization techniques,
which aim to capture and represent key features in the data.
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