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Abstract—The Morse-Smale complex is a well studied topological structure that represents the gradient flow behavior between critical
points of a scalar function. It supports multi-scale topological analysis and visualization of feature-rich scientific data. Several parallel
algorithms have been proposed towards the fast computation of the 3D Morse-Smale complex. Its computation continues to pose
significant algorithmic challenges. In particular, the non-trivial structure of the connections between the saddle critical points are not
amenable to parallel computation. This paper describes a fine grained parallel algorithm for computing the Morse-Smale complex and
a GPU implementation (gMsc). The algorithm first determines the saddle-saddle reachability via a transformation into a sequence of
vector operations, and next computes the paths between saddles by transforming it into a sequence of matrix operations.
Computational experiments show that the method achieves up to 8.6x speedup over pyms3d and 6x speedup over TTK, the current
shared memory implementations. The paper also presents a comprehensive experimental analysis of different steps of the algorithm
and reports on their contribution towards runtime performance. Finally, it introduces a CPU based data parallel algorithm for simplifying
the Morse-Smale complex via iterative critical point pair cancellation.

Index Terms—Scalar field, Morse-Smale complex, Shared memory parallel algorithm, GPU.
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INTRODUCTION

The Morse-Smale (MS) complex [10], [11] is a topological
structure that provides an abstract representation of the gradient
flow of a scalar function. It represents a decomposition of the
domain of the scalar field into regions with uniform gradient
flow behavior. Applications to feature-driven analysis and visu-
alization of data from a diverse set of domains including mate-
rial science [20], [30], cosmology [36], and chemistry [7], [15]
have clearly demonstrated the utility of this topological structure.
A sound theoretical framework for identification of features, a
principled approach to measuring the size of features, controlled
simplification, and support for noise removal are key reasons for
the wide use of this topological structure.

Satisfying the interactivity requirement in feature-driven anal-
ysis and visualization has increasingly become a challenge due
to the availability of higher precision and feature-rich data. Time-
varying data poses another challenge where each time step may
have to be analyzed within a short time budget. Different stages of
the analysis pipeline are optimized for runtime performance [29]
with the consequence that the computation of the MS complex is
a computational bottleneck. Naturally, several methods proposed
during the past decade for computing the MS complex employ
parallel algorithms. These methods are all designed to execute on
multicore CPU architectures, with the exception of a few methods
where the embarrassingly parallel critical point computation step
executes on the GPU. In this paper, we present a fast parallel
algorithm that computes the graph structure of the MS complex
via a novel transformation to matrix and vector operations. It
further leverages data parallel primitives resulting in an efficient
end-to-end GPU implementation. We also present a CPU based
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parallel algorithm for simplifying the MS complex via iterative
cancellations of critical point pairs.

1.1 Related Work

The development of effective workflows for the analysis of large
scientific data based on the MS complex, coupled with increasing
compute power of modern shared-memory and massively parallel
architectures has generated a lot of interest in fast and mem-
ory efficient parallel algorithms for the computation of 3D MS
complexes. Gyulassy et al. [17] introduced a memory efficient
computation of 3D MS complexes, where they handled large
datasets that do not fit in memory. Their method partitions the data
into blocks, called parcels, that fit in memory. Next, it computes
the MS complex for the individual parcels and uses a subsequent
cancellation based merging of individual parcels to compute the
MS complex of the union of the parcels. This framework was
extended in the design of distributed memory parallel algorithms
developed by Peterka et al. [29] and Gyulassy et al. [23], where
they additionally leverage high performance computing clusters
to process the parcels in parallel. Subsequent improvements to
parallelization were based on novel locally independent definitions
for gradient pairs by Robins et al. [31] and Shivashankar and
Natarajan [34] that allowed for embarrassingly parallel approaches
for gradient assignment. Further improvements in computation
time were achieved by efficient traversal algorithms for the ex-
traction of ascending and descending manifolds of the extrema
and saddles [9], [16], [34].

Graph traversals for computing the ascending and descending
manifolds of extrema, owing to their relatively simple structure,
have been modeled as root finding operations in a tree and
subsequently parallelized on the GPU [34]. However, the best
known algorithms for the more complex saddle-saddle traversals
are still variants of a fast serial breadth first search traversal. More
recently, Gyulassy et al. [18], [19], [21] and Bhatia et al. [7] have
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presented methods that ensure accurate geometry while computing
the 3D MS complex in parallel. The approaches described above,
with the exception of Shivashankar and Natarajan [34], implement
CPU based shared memory parallelization strategies. Shivashankar
and Natarajan [34] describe a hybrid approach and demonstrate
the advantage of leveraging the many core architecture of the
GPU. Embarrassingly parallel tasks such as gradient assignment
and extrema traversals were executed on the GPU, resulting in a
speedup over CPU based approaches.

Some of the above-mentioned methods employ a discrete
Morse theory based approach for defining and computing the
MS complex with a focus on 2D and 3D scalar functions [9],
[16], [22], [34], [37]. This approach results in combinatorial and
numerically robust algorithms. The discrete Morse theory based
approach is also amenable for extension to higher dimensions, as
shown in recent work by Fugacci et al. [14] who compute Morse
complexes from simplicial complexes. The resulting discrete
Morse complex finds applications to homology computation [24],
[31] and analysis of shape and scalar fields [8].

1.2 Contributions

In this paper, we describe a fast GPU parallel algorithm for com-
puting the MS complex. The algorithm employs the discrete Morse
theory based approach, where the gradient flow is discretized to
elements of the input grid. Key contributions include

o An algorithm that utilizes fine grained parallelism for all steps
of the MS complex computation and hence enables an effi-
cient end-to-end GPU implementation.

« Two novel ideas for transforming graph traversal into opera-
tions that are amenable to parallel computation: (a) BES tree
traversal for determining saddle-saddle reachability is trans-
formed into a sequence of vector operations, and (b) saddle-
saddle path computation is modeled as wave propagation and
transformed into a sequence of matrix multiplication opera-
tions. These transformations help resolve a major computa-
tional bottleneck in previous parallel algorithms.

« Efficient parallel methods for populating the MS complex
data structure.

« A data parallel algorithm for simplifying the MS complex.
The algorithm utilizes a grid subdivision scheme to identify
pairs of critical points that may be cancelled in parallel and
results in improved runtimes and comparable quality of the
simplified complex.

« A GPU implementation of the parallel algorithm, gMSC,
which is up to 8.6 times faster than pyms3d [3], [34], [35]
and 6 times faster than TTK [39], which are existing meth-
ods. gMSC uses highly optimized data parallel primitives such
as prefix scan and stream compaction extensively, thereby
leading to high scalability and efficiency.

o A detailed experimental analysis of the MS complex com-
putation algorithm based on a study of the contributions of
each step towards overall performance improvement, statis-
tics that indicate the available parallelism for the ditferent
steps and how it is leveraged, and finally demonstrating how
the different computational bottlenecks are removed via the
transformations.

A previous paper presented a brief description of the GPU
algorithm together with preliminary results [38]. In this extended
version, we additionally present methods for parallel population

of the MS complex data structures, a parallel simplification algo-
rithm, and improvements to the GPU implementation that results
in better runtimes. We also perform extensive computational
experiments on a large number of datasets and include a report
of a detailed investigation of the different steps of the algorithm
and their contribution towards the overall runtimes.

2 PRELIMINARIES

Fig. 1. A 2D scalar function and its critical points (maxima - red, minima
- blue, saddle - green) and reversed integral lines. A 2-cell MSymS; of
the MS complex is a collection of all integral lines between m and M. A
1-cell (say, mS; or S;M) of the MS complex consists of the integral line
between a minimum and a saddle or the integral line between a saddle
and a maximum.

In this section, we briefly introduce the necessary background
on Morse functions and discrete Morse theory that is required to
understand the algorithm for computing the 3D MS complex.

2.1 Morse-Smale Complex

Given a smooth scalar function f:R3 — R, the MS complex of
f is a partition of R based on the induced gradient flow of f. A
point p. is called a critical point of f if the gradient of f at p,.
vanishes, Vf(p.) = 0. If the Hessian matrix of f is non-singular at
its critical points, the critical points can be classified based on their
Morse index, defined as the number of negative eigenvalues of the
Hessian. Minima, 1-saddles, 2-saddles and maxima are critical
points with index equal to 0,1,2, and 3 respectively. An integral
line is a maximal curve in R? whose tangent vector agrees with the
gradient of f at each point in the curve. The origin and destination
of an integral line are critical points of f. The set of all integral
lines originating at a critical point p. together with p. is called the
ascending manifold of p.. Similarly, the set of all integral lines
that share a common destination p. together with p. is called the
descending manifold of p..

The Morse-Smale (MS) complex is a partition of the domain
of f into cells formed by a collection of integral lines that share
a common origin and destination. See Figure 1 and Figure 2 for
examples in 2D and 3D. The cells of the MS complex may also be
described as the simply connected cells formed by the intersection
of the ascending and descending manifolds. The /-skeleton of the
MS complex consists of nodes corresponding to the critical points
of f together with the arcs that connect them. The 1-skeleton is
often referred to as the combinatorial structure of the MS complex.
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Fig. 2. The 3D Morse-Smale complex is an abstract representation of the gradient flow of a 3D scalar function. (left to right) A scalar function;
combinatorial structure of the corresponding MS complex consists of critical points and arcs connecting them; the descending 3-manifolds of
maxima (red) that consist of integral lines that terminate at the corresponding maxima, descending 2-manifold of a 2-saddle (dark green) and its
dual ascending 1-manifold, and the descending 1-manifold of a 1-saddle (light green).
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Fig. 3. Persistence (6) driven simplification of a 2D MS complex. At a
threshold of 0.01, all pairs of critical points (saddle-maxima or saddle-
minima in 2D) whose persistence is below 0.01 are cancelled. Increas-
ing the threshold further to 0.5 removes all small sized topological
features revealing the significant mountains, represented by the cor-
responding peaks. Note that when a maximum is cancelled, arcs that
terminate at that critical point are extended to the surviving maximum.

The scalar function may be simplified via repeated cancella-
tion of critical point pairs that are connected by a single arc in
the MS complex, see Figure 3. A cancellation operation removes
the critical point pair, the arc between them, and reconnects the
neighbors in the 1-skeleton. A cancellation corresponds to a
local smoothing of the scalar function [11]. The difference in
function value between the critical point pair is a good measure
of the effect of cancellation on the function. In 2D, the least
persistent [12] critical point pair is connected by an arc in the MS
complex [11]. MS complex simplification via repeated critical
point pair cancellation is often referred to as persistence-driven
simplification due to this relationship between the measure of an
arc and topological persistence. Cancellations ordered based on
the difference in function value between the critical point pair
result in a natural sequence of simpler MS complexes.

2.2 Discrete Morse Theory

Discrete Morse theory, introduced by Forman [13], is a combi-
natorial analogue of Morse theory that is based on the analysis
of a discrete gradient vector field defined on the elements of
a cell complex. Adopting an approach based on discrete Morse
theory for computing the MS complex results in robust and
computationally efficient methods with the added advantage of
guarantees of topological consistency [16], [17], [31], [33], [34],
[37]. We focus on scalar functions defined on a 3D grid, a cell
complex with cells of dimensions 0,1,2, or 3. If an i-cell « is
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Fig. 4. Discrete gradient, critical cells, and gradient paths for a function
defined on a grid. The figure shows a subset of the grid. Gradient pairs
(brown arrows) between two cells constitute gradient paths. A cell that is
not paired is critical. There are four types of critical cells: maximum (red),
2-saddle (dark green), 1-saddle (light green), and minimum (blue).

incident on an (i+ 1)-cell 8 then o is called a facet of B and f is
called a cofacet of «.

A gradient pair is a pairing of two cells (o), (1)), where o
is a facet of 3, see Figure 4. The gradient pair is a discrete vector
directed from the lower dimensional cell to the higher dimensional
cell. It corresponds to the negative gradient at a point for smooth
functions. A discrete vector field defined on the grid is a set of
gradient pairs where each cell of the grid appears in at most one
pair. A critical cell with respect to a discrete vector field is one that
does not appear in any gradient pair. The index of the critical point
is equal to its dimension. A V-path in a given discrete vector field
is a sequence of cells a(()'),ﬁélﬂ),al('),ﬁl(l+l)...., Oz,(l)ﬁr(lﬂ),(xr(le
such that oc,il) and a,gil are facets of ﬁ,flﬂ) and (Oc,gl),ﬁkml)) isa
gradient pair for all k = 0..r. A V-path is called a gradient path if
it has no cycles and a discrete gradient field is a discrete vector
field which contains no non-trivial closed V-paths. A gradient path
is maximal if there exists no longer gradient path that contains it.
Maximal gradient paths for a function defined on a grid correspond
to the notion of integral lines in the smooth setting, see Figure 6.
We can thus similarly define ascending and descending manifolds
for discrete scalar functions defined on a grid.
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2.3 Parallel Primitives

Data parallel primitives serve as effective tools and building blocks
in the design of parallel algorithms. We leverage them in all steps
of the MS complex computational pipeline. Specifically, we use
two primitives, prefix scan and stream compaction.

1/3/7 2/0f2] o/1/1 0 \ 0 \ 1 ‘
1 4|11 13|13 111
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Fig. 5. (left) A prefix sum operator applied on the top array produces
the array on the bottom. (right) The boolean array on top is stream
compacted to generate an array of true boolean values.

Given an array of elements and a binary reduction operator, a
prefix scan is defined as an operation where each array element
is recomputed to be the reduction of all earlier elements [25].
If the reduction operator is addition, the operator is called prefix
sum. Given an array of elements, stream compaction produces a
reduced array consisting of elements that satisfy a given criterion.
Figure 5 illustrates the two operators. We use Thrust [5], a popular
library packaged with CUDA [1], for the prefix scan and stream
compaction routines.

3 ALGORITHM

Discrete Morse theory based algorithms for computing the MS
complex on a regular 3D grid consist of two main steps
[16], [17], [31], [34]. Both steps are amenable to parallel com-
putation. The first step computes a well defined discrete gradient
field and uses it to locate all critical cells. Each 3-cell may be
processed in parallel together with its lower dimensional cells. The
second step computes ascending and descending manifolds as a
collection of gradient paths that originate and terminate at critical
cells. A combinatorial connection between two critical cells is
established if there exists a gradient path between them. This step
may be parallelized by assigning the source of each ascending and
descending manifold to a different thread. The collection of critical
cells together with the connections is stored as the combinatorial
structure of the MS complex.

The second step computes two types of gradient paths: sad-
dle-extrema and saddle-saddle paths. Different traversal strategies
have been proposed to compute these paths. The parallel algorithm
with the best known performance for shared memory processors
employs strategies that leverage the characteristics of the gradient
path structure in the two cases [34]. They compute the saddle-
extremum paths using root finding operations on a tree. The sad-
dle-saddle path computation is reduced to a multi-source multi-
destination path counting problem in a directed acyclic graph. This
path counting is affected by an exponential increase in the number
of paths between saddles due to the presence of multiple splits and
merges in gradient paths. All paths originating from a source are
computed by the same thread, thereby serializing the computation.
Thus, saddle-saddle path computation is the primary performance
bottleneck in current parallel algorithms for MS complex compu-
tation, and we address it in our algorithm.

We broadly follow the discrete Morse theory based approach
employed by Shivashankar and Natarajan [34] for computing the
MS complex. We follow their approach in the first step that iden-
tifies critical cells, and for the saddle-extrema path computation

in the second step. However, we introduce new algorithms for
computing the gradient paths between saddles. Specitically, we
introduce novel transformations that reduce the saddle-saddle gra-
dient path traversal into highly parallelizable vector and matrix op-
erations. These transformations utilize ideas for computing paths
in graphs via matrix operations [32], [40], [41].

In this section, we restrict the description to the newly de-
veloped algorithms and refer the reader to earlier work [34]
for details on critical cell identification and saddle-extrema arc
computation. Our implementation of the critical cell and sad-
dle-extrema arc computation additionally incorporates improved
methods for storage using data parallel primitives, as described in
subsection 3.5.

3.1 1-Saddle — 2-Saddle connections

Gradient paths between 1-saddles and 2-saddles can both merge
and split as shown in Figure 6 (c). A sequence of merges
and splits result in an exponential growth in the number of
gradient paths. Computing the saddle connections is the major
computational bottleneck in current methods for computing the
MS complex. The saddle-saddle arc computation is analogous
to counting paths between multiple sources and destinations in
a directed acyclic graph (DAG) that represents all 1-2 gradient
pairs (Figure 6 (d)). A trivial task based parallelization across all
source saddles is affected by the exponential number of paths
that need to be explored by each thread and hence an increase
in storage requirement. Existing approaches tackle this problem
by first marking reachable pairs of saddles using a serial BFS
traversal. Next, they traverse paths between reachable pairs and
count all paths using efficient serial traversal techniques.

In the following subsections, we introduce transformations
that enable efficient parallel computation of both steps, reach-
ability computation and gradient path counting. The reachable
pairs in the DAG are identified using a fine-grained parallel BFS
algorithm [28] that is further optimized for graphs with bounded
degree. In order to compute all gradient paths between reachable
pairs, we first construct a minor of the DAG by contracting all
simple paths to edges. We represent the minor using adjacency
matrices and compute all possible paths between the reachable
pairs via a sequence of matrix multiplication operations. These
transformations enable scalable and fine grained parallel imple-
mentations of both steps without the use of synchronization or
locks.

3.2 Saddle-Saddle reachability

We mark reachable saddle-saddle pairs using parallel BFS traver-
sals of the DAG starting at all 1-saddles. A BFS traversal itera-
tively computes and stores a frontier of nodes that are reachable
from the source node. The frontier is initialized to the set of all
source nodes, namely the 1-saddles. After the i'" jteration, the
frontier consists of nodes reachable via a gradient path of length i.
We observe from Figure 6 (c) that while traversing a gradient path,
the next 1-2 gradient pair should necessarily contain one of four
possible 1-cell facets of the 2-cell from the current 1-2 gradient
pair. So, the outdegree of a node in the DAG is at most 4, which
in turn imposes a bound on the size of the frontier in the next
iteration. This bound allows us to allocate sufficient space to store
the next frontier. All nodes in the current frontier are processed in
parallel to update the frontier. Subsequently, a stream compaction
is performed on the frontier to collect all nodes belonging to the
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Fig. 6. Maximal gradient paths between (a) maximum (red) and a 2-saddle (dark green), (b) 1-saddle (light green) and a minimum (blue), and
(c) 2-saddle and a 1-saddle. (d) A directed acyclic graph (DAG) representing the collection of gradient paths between 2-saddles and 1-saddles.
Dashed edges of the DAG represent incidence relationship between a 2-saddle or the 2-cell of a (1,2) gradient pair and the 1-cell of a (1,2) gradient
pair or a 1-saddle. There exist two possible gradient paths between the 2-saddle and 1-saddle due to the presence of a split and merge. A sequence
of such split-merge configurations results in an exponential increase in the number of gradient paths. The DAG contains an additional component
consisting of only two nodes in the special case when a 2-saddle is adjacent to a 1-saddle (bottom cube in (c)).

next frontier. The traversal stops when it reaches a 2-saddle and
the algorithm terminates when the frontier is empty.

Fig. 7. Gradient path counting in the DAG minor. We count paths
between 1-saddles and 2-saddles in the DAG by iteratively identifying
paths of increasing length in the DAG minor. The " iteration identifies
all paths of length i in the DAG minor, discovering the paths from nodes

in level-0 to nodes in level-i. A node in level-i may be discovered again
in a later iteration. In this case, the algorithm records both paths.

3.3 Gradient path counting

We now discuss an efficient parallel algorithm for traversing and
counting all gradient paths between the reachable pairs identified
earlier. So, we restrict our attention to the subgraph of the 1-
skeleton of the MS complex consisting of gradient paths between
1-saddles and 2-saddles. Edges belonging to the corresponding
subgraph of the DAG are marked during the previous BFS
traversal step. Let G denote this subgraph. Direct traversal and
counting the number of paths between a pair of reachable saddles
is again inherently serial. Instead, we first construct a minor G’ of

G by contracting all simple sub-paths in G. This transformation
results in a graph G’ whose nodes are either 1-saddles, 2-saddles,
or junction nodes. A junction node is a node whose outdegree is
greater than 1. A path in the graph G is simple if none of its interior
nodes is a junction node. The end points of a maximal simple
path of G is either a junction node or a saddle. We construct G’ by
traversing all maximal simple paths of G in parallel. Paths in G’
are counted using a sequence of matrix multiplication operations,
which are amenable to fine grained parallelism.

DAG minor construction. We compute a minor G’ of G by
contracting all simple paths between 1-saddles, 2-saddles and
junction nodes into edges between their source and destination
nodes. We process all 1-saddles and junction nodes in parallel to
trace all paths that originate at that node. The paths terminate
when they reach a junction node or a 2-saddle. So, all paths
are guaranteed to reach their destination without splits. Note that
some of the paths may merge. However, such paths originate from
different source nodes and are processed by different threads.

All path traversals share a common array to record the most
recent visited node in each path. In each iteration, all paths
advance by a single node. The paths terminate if they reach a
2-saddle or a junction node. We perform a stream compaction
on the array at the end of the iteration to remove terminated paths
and to ensure that all threads are doing useful work. The algorithm
terminates when all paths have been marked as terminated. When
a path terminates, the thread inserts an edge into an adjacency
list representation of G’'. Two different paths between a pair of
junction nodes or between a saddle and junction node are recorded
as two different copies of the edge. The adjacency list is converted
into a sparse matrix in the next step, at which time copies of edges
in G’ are stored as edge multiplicity.

Path counting via matrix operations. Nodes of the graph minor
G’ constructed via path contraction may be placed in levels as
shown in Figure 7. We convert the adjacency list representation
of G’ into sparse matrices. This conversion is crucial because it
enables the counting of the number of paths between all 1-saddle
— 2-saddle pairs using iterative matrix multiplication. Edges in G’
may be classified into four different types: 1s—j, j—j, j—2s
and 1s—2s. Let Ajs_j, Bj_j, B"j_2, and Dy,_, represent the
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adjacency matrices that store the respective edges with multiplic-
ity. For example, rows of the adjacency matrix A, ; correspond
to 1-saddles, columns correspond to the junction nodes, and the
matrix elements denote the multiplicity of the 1s — j edge in G'.

Consider nodes belonging to consecutive levels in Figure 7, in
particular between level-O and level-1. We first multiply Ay
x Bj_; and store the result in Aj;_;, which establishes con-
nections between level-0 and level-2 nodes with multiplicity.
Each successive multiplication of Ay ; with B;_; establishes
connections between level-0 and the newly discovered level. A
simple sequence of these matrix operations may not result in the
desired set of path traversals. In particular, if a node is revisited
at multiple levels, it appears at different depths from the source
and each unique visit should be recorded. We ensure that such
nodes are also handled correctly by updating the sequence of
matrix operations so that it maintains a storage matrix A”1_ j
that collects all newly discovered paths after each iteration. We
describe the procedure in detail below.

Initialize four matrices with their respective edges as follows:
Ais—j, Bj_j, B"j_2y, Diy_2,. We maintain A™j_;, which iter-
atively records newly discovered paths. Each iteration multiplies
Ays_j with Bj_; to yield a matrix Cyy_ ;, after which we add
matrix A, ; to AT j- The newly discovered paths in Ci_;
become the input frontier Ay;_ ; for the next iteration’s multipli-
cation.

After the final iteration, A, _ j contains all possible paths
from 1-saddles to junction nodes. The purpose of A*s_ j 18 two-
fold: first, it records shorter paths that terminate during intermedi-
ate iterations. Next, nodes that are discovered multiple times add
their incrementally discovered paths to it after each multiplication.
This matrix is then multiplied by B j—2s to obtain D" 152,
establishing connections between 1-saddles and 2-saddles. Edges
between 1-saddles and 2-saddles in G’ are stored in Dis;_os. In
the final step, Dis_os is added to D" 15_2s to record the set
of paths with multiplicity between all 1-saddles and 2-saddles.
Matrices are stored in their sparse forms, thereby considerably
reducing the memory footprint, see Section 3.5. We use the CUDA
sparse matrix library cuSPARSE [2] for matrix multiplication
operations.

3.4 Saddle-Extrema arcs

The difference in the structure of gradient paths that originate /
terminate at extrema versus those originating / terminating at sad-
dles necessitates different approaches for their traversals. Gradient
paths that originate or terminate at extrema can either split or
merge but not both. So, traversing saddle-extrema gradient paths
is analogous to a root finding operation in a tree. We employ a
parallel tree traversal algorithm that computes the saddle-extrema
arcs while also computing the descending manifolds of maxima
and ascending manifolds of minima [34]. The algorithm traverses
gradient paths from all cells in parallel via pointer jumping [26],
where each cell’s destination is updated in every iteration. This
algorithm performs well in practice, so we employ the same in
our computation. However, we incorporate code optimizations as
described in the following section to further improve the runtimes
of the routines that populate the data structures.

3.5

gMSC implements the algorithm in C++ and uses the CUDA
framework for parallel computation on the GPU in contrast to the

Implementation and optimizations

OpenCL based implementation in pyms3d [3], [34], [35]. In this
section, we describe novel implementation level optimizations in
gMSC that aim to improve performance in terms of running time,
data structure population, and memory usage.

We store the ascending and descending 1-manifolds as two
directed graphs whose nodes are the critical points of the scalar
function. Each graph is stored as an STL vector of maps, to
efficiently retrieve paths in either direction on demand. Each
element of the STL vector represents a critical point and the
corresponding map stores the adjacency list of the critical point.
We populate the graph using a pre-sized parallelizable vector,
coupled with GPU parallel prefix sum and stream compaction
routines that enable efficient data handling.

Gradient pairs and critical points. Gradient pairs are computed
in the first step of the algorithm. The scalar field is sampled at all
vertices of the 3D grid and the gradient pair information is stored
at each cell of the grid as a bit vector. The gradient pairs and
scalar fields are stored in specialized memory on the GPU and are
accessed using texture and surface objects provided by CUDA.
This surface and texture memory facilitates high performance and
bandwidth through spatial locality in the reads [1]. Further, they
also serve as a cache. gMSC leverages this option by maximizing
coalesced memory access as opposed to a traditional global
memory usage.

The critical points are identified and marked in the second step.
In order to count them efficiently, we employ parallel reduction
techniques in conjunction with shared memory synchronization to
obtain block-wise sums. This is followed by a prefix sum from
the Thrust library [5] which gives us the total number of critical
points. We also use Thrust’s stream compaction for optimized
population of critical point information in memory, by marking
critical cells and discarding the rest using compaction.

Saddle-Saddle reachability. In contrast to a serial BFS based
reachability computation [34], gMSC marks all reachable paths
between 1-saddles and 2-saddles in parallel. It collects all 1-
saddles by marking them in parallel using boolean values and
establishes their ordering using a prefix sum. It uses Thrust device
vectors for dynamic memory allocation and to store the current
and discovered frontiers in each BFS iteration. The size of the
discovered frontier can be at most four times the size of the
current frontier. The first frontier will be the set of 1-saddles
and each thread is assigned to explore its designated saddle’s
cofacet pairs. All discovered 1-2 pairs constitute paths leading
towards 2-saddles. We mark these pairs as visited and store them
in the discovered frontier. Invalid pairs are also marked. A stream
compaction collects all valid discovered pairs, copies them to the
next iteration’s current frontier and discards the rest. When all
paths reach 2-saddles, the compaction returns an empty set of
discovered pairs and the traversal algorithm terminates.

Gradient path counting. The degree of parallelization obtained
in the OpenMP based implementation of gradient path counting in
pyms3d is limited by the number of available CPU cores and the
number of source saddles. Our algorithm overcomes this limitation
by transforming the computation into GPU parallelizable matrix
operations. The dynamic resizing capabilities offered by Thrust
device vectors prove to be an integral part of all subsequent steps.
We compute the junction nodes in parallel by counting the number
of cofacet pairs of each reachable 1-cell, except for 1-saddles, and
marking it as a junction node if the outdegree is greater than 1.
We further construct an ordered list of these junction nodes using
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prefix sum and stream compaction.

The DAG minor is constructed by traversing, in parallel, the
simple paths between saddles and junction nodes. The source-
destination pairs may be stored in the adjacency matrices Aj,_ ;,
B;_j, B*j,gx, and Djs;_»,. At most four paths originate at a
source node. So, we store the DAG minor using adjacency lists.
Two arrays store the current frontier of the different paths and
its stream compacted counterpart. The latter is processed in the
subsequent iteration to obtain the next frontier. The path traversals
are performed in two passes, with 1-saddles and junction nodes
as sources, respectively. This partition reduces the memory foot-
print within each iteration since we store and populate only two
adjacency lists at a time instead of four. All arrays are allocated
as Thrust device vectors. We ensure that the traversals, both in
the parallel BFS and path counting routines, consistently move in
the direction opposite to the discrete gradient in order to prevent
cycles. Some paths do not terminate at a junction node or a 2-
saddle. We discard such paths.

We convert the adjacency lists to the Compressed Sparse
Row (CSR) [2] representation of the adjacency matrix to enable
efficient matrix operations. The CSR and CSC (Compressed
Sparse Column) formats are popular and efficient representations
of sparse matrices. Each iteration of the path counting algorithm
requires a matrix multiplication followed by a matrix addition.
Addition in the sparse form requires knowledge of the non-
zero pattern in the matrix, which is stored in a temporary array
before copying it to A5 j- The iterations terminate when the
multiplication returns a zero matrix, indicating that all 1s— j paths
are stored in A" 5_ j- In the final step, the product of A" j
and B* j—2s is added to Dis_os using a temporary matrix. The
matrix Djs_o, is stored in both CSR and CSC formats, and is
finally transferred to the main memory to enable efficient parallel
storage of the combinatorial structure of the MS complex. Since
the ascending and descending manifolds are stored as two directed
graphs, the CSR and CSC formats can be directly used to populate
their respective directions efficiently. We assign a thread to insert
all paths originating at a given critical point in a given direction,
thus achieving efficient parallel storage. We present experimental
evidence of the sparsity of the matrices in section 5 that justifies
the sparse representation. The matrix operations are implemented
using the cuSPARSE library. Further, we reduce memory footprint
at each step by effectively using Thrust’s stream compaction and
dynamically allocated device vectors.

Saddle-Extrema arcs. We implement the parallel tree traversal
algorithm by [34] in CUDA. The destination of paths originating
at each cell in the domain are updated iteratively using two
buffers, implemented as 3D surface objects, the benefits of which
were discussed earlier. Two buffers are required to avoid race
conditions during parallel source and destination updates. We
swap their values after each iteration. We also maintain a global
boolean flag on the GPU accessed by all threads, which acts as
an indicator for whether a path terminated by reaching its end
point extremum. We check this flag after each iteration. If it is
set, we verify if all paths have reached their destination extrema
and terminate the algorithm accordingly. We choose Thrust device
vectors in conjunction with prefix sum, stream compaction, and
cuSPARSE conversion routines to efficiently store the final paths
between all saddles and extrema in CSR and CSC formats. An
additional array stores paths between all non-critical domain cells
and their destination extrema. The traversals are performed in two

successive passes, the first collecting 1-saddle — minima and the
second collecting 2-saddle — maxima paths.

Data structure. In order to facilitate efficient querying of the
ascending and descending manifolds of the MS complex, we
employ an STL vector to store critical points and individual
maps for storing the ascending and descending arcs incident on
each critical point. All arcs of the MS complex are stored twice,
in a bidirectional manner, within this data structure. The data
structure is populated in a serial step and is hence a computational
bottleneck. We reduce the time required to populate this data
structure by parallelizing the population across the STL vector
of critical points. Each CPU thread populates the arcs incident on
one critical point in a given direction. When the saddle-extrema
and saddle-saddle paths are computed, the MS complex arcs are
stored in both CSR and CSC formats, followed by a GPU-CPU
data transfer operation. The tree traversal algorithm for computing
the saddle-extrema arcs does not report the results in the desired
CSR and CSC formats. So, we convert them explicitly.

3.6 Runtime analysis

Let n denote the number of vertices in the input cube grid. Gra-
dient pair and critical point computation takes O(1) time per cell
in the grid, and saddle-extrema arc computation requires O(logn)
iterations following the algorithm from pyms3d [34]. The paral-
lel BFS algorithm executes in O(n) iterations since the depth of
the tree can be O(n). Parallel stream compaction at the end of
each iteration requires O(log(n)) time [25] using the work effi-
cient implementation in CUDA. So, parallel BFS for saddle-sad-
dle reachability runs in O(nlogn) time. The number of iterations
in the DAG minor construction is O(n). Accounting for stream
compaction gives us a runtime complexity of O(nlogn). All ma-
trix multiplication and matrix addition operations in each iteration
of the path counting algorithm are performed in parallel. Matrix
multiplication takes O(logn) time and matrix addition can be per-
formed in O(1) time. The path counting algorithm executes in
O(n) iterations, corresponding to the length of the longest path
between two nodes of the DAG minor. So, the total time taken for
the MS complex computation is O(nlogn).

4 PARALLEL SIMPLIFICATION

Parallel simplification is a relatively unexplored problem due to
the intrinsic serial nature of the operation. Existing literature
suggests that the ordering of critical point pair cancellations
determines the runtime performance and final quality of the
simplified scalar field [17], [20]. We propose a parallel algorithm
that leverages a grid subdivision scheme and naturally imposes a
specific sequence of cancellations. Our method achieves superior
runtimes while maintaining comparable quality of the simplified
MS complex with respect to the serial counterpart.

4.1 Grid subdivision

We subdivide the underlying domain grid into regular subgrids and
perform persistence ordered cancellations within each subgrid in
parallel. The arcs are tested for independence prior to cancellation.
We determine if a given critical point pair in the 1-skeleton of the
MS graph may be canceled by computing its arc multiplicity and
persistence. Critical point pairs connected by multiple distinct arcs
are not viable candidates for cancellation because they lead to a
strangulation [22]. A valid cancellation of a critical point pair pg
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(index(p) = index(q) + 1) modifies the 1-skeleton as follows: the
descending arcs of p are rerouted towards the end points of the
ascending arcs of ¢, the nodes p and g and arcs incident on them
are deleted. Clearly, the cancellation affects the neighborhood of
the arc pq.

Performing conflict-free cancellations in parallel (i.e., without
concurrent updates to a given node from two different cancella-
tions) necessitates a minimum distance of three arcs between two
critical point pairs (a 3-link neighborhood) as shown in Figure 8.
In order to cancel arcs that belong to two different subgrids
in parallel, we grow a constraint region around the common
boundary between the subgrids. This constraint region consists of
arcs that are incident on or cross the common boundary between
the subgrids and arcs that are adjacent to these boundary arcs. The
constraint region is computed in parallel over all boundary arcs.

Fig. 8. 3-link neighborhood. Arcs ¢; and ¢, may be canceled concur-
rently because they do not lie within each other’s 3-link neighborhood.
Canceling ¢; and e, introduces the red reconnection arcs. No node is
concurrently impacted by the two cancellations. Hence, all operations
that update the 1-skeleton are thread safe.

The set of all arcs within each subgrid that do not belong to
the constraint regions can be canceled serially. We leverage CPU-
based parallelism (OpenMP) across all subgrids. The available
parallelism, which is dictated by the number of subgrids, is
insufficient to fully exploit GPU parallelism while offsetting the
CPU-GPU data transfer costs.

The simplification algorithm proceeds as follows. The domain
grid is subdivided into subgrids via iterative slicing along the
X, Y, and Z directions. Boundary arcs and constraint regions
are marked in parallel. Next, we proceed with the cancellation
in parallel across each subgrid. Each thread serially cancels all
valid arcs contained within its designated subgrid boundaries
and updates the MS complex concurrently. In order to ensure
that cancellable arcs lying within the constraint regions are also
scheduled for cancellation, we repeat the process by shifting the
shared boundaries of subgrids using fixed offsets. We apply a final
round of serial cancellation to handle low persistence arcs that
may have escaped cancellation.

Let n denote the number of vertices in the input cube grid and
m denote the maximum degree of a node in the MS complex. The
constraint region computation takes O(m) time in parallel — arcs
that cross or touch the boundary are identified in a first pass in
O(1) time followed by a neighborhood traversal in O(m) time for
each boundary arc. Reconnection after a critical point pair cancel-
lation takes O(m?) time. So, the simplification takes (nm?/k) time
if O(n) cancellations are performed using a decomposition into k
subgrids.

4.2

The first step of parallel MS complex simplification involves
creating subgrids whose size is determined based on the available

Implementation

CPU parallelism. We perform this in parallel, with each thread
creating and storing its subgrid information independently in a
shared array. Next, we compute the constraint region for each
subgrid boundary. Using all available OpenMP threads, we mark
boundary arcs and their end point nodes in parallel using a boolean
array. Further, in parallel, we mark all arcs that are adjacent to
these boundary arcs.

The final step requires the serial cancellation of each subgrid’s
valid persistent arcs. We adopt previous approaches that utilize a
priority queue, iteratively pop the top of the queue, check if the
arc is eligible to be canceled, and then cancel it. Deleted arcs
are removed in a lazy manner, new arcs are inserted into the MS
complex and potentially into the priority queue. All arcs created
due to a cancellation could potentially be adjacent to a boundary
arc and hence belong to the constraint region. We handle this by
exploring both conservative and non-conservative approaches. The
former approach postpones the cancellation of all newly created
arcs until the final serial cancellation step. The latter approach
checks if either end point node of a newly created arc is a boundary
node. If yes, the newly created arc lies within the constraint region
and is not included into the priority queue. Else, it is included into
the priority queue and considered for cancellation.

We repeat this procedure iteratively for different directions and
offsets. We experimented with two sequences for iterative slicing.
The first sequence (XYZ + XYZ) performs six iterations. The
initial iterations subdivide the grid along the X-axis followed by
Y and Z, the subsequent three iterations subdivide the grid in the
same order but with a 50% offset. The second sequence (XX +
YY + ZZ) also performs six iterations, first by subdividing along
X-axis followed by another subdivision along X-axis with a 50%
offset. We investigated both sequences in combination with both
conservative and non-conservative approaches described earlier.

4.3 Discussion

We investigated multiple variants of the subdivision scheme and
methods for scheduling the cancellations. We now discuss plau-
sible reasons for their deficient performance. Small subgrid sizes
and simultaneous slicing in X, Y, and Z directions within a single
iteration resulted in poor simplification progress. We ascribe this to
the potential creation of a large number of invalid boundary arcs,
which in turn serialize the simplification. We tested multiple offset
values for shifting subgrid boundaries and observed declining
progress in simplification after successive iterations. Increasing
the number of subgrids led to poor runtime performance and
a significant increase in the number of strangulations, both of
which indicate the presence of several boundary and high valence
arcs. From our experiments, we found that a subdivision into
two subgrids resulted in the best performance. We also explored
the option of including an iteration where we cancel all zero
persistence arcs in a serial step prior to shifting boundaries or
switching slicing directions, but there was no noticeable difference
in performance.

In addition to the above, we investigated a generic approach
for data parallel simplification, namely by computing a maximal
independent set. A maximal independent set is computed on the
1-skeleton of the MS complex using the 3-link neighborhood
to establish independence between arcs. The independent set
comprises the candidate set of arcs to be canceled. Canceling
all valid arcs in the independent set in parallel yielded a poor
rate of progress in the simplification process, especially for larger
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datasets. We suspect that the presence of large valence arcs inhibits
a sufficiently large independent set from being identified in each
iteration. Experiments indicated a large disparity between the size
of the independent set and the size of the 1-skeleton as the dataset
sizes grew.

5 COMPUTATIONAL EXPERIMENTS

All steps of the computational pipeline execute on the GPU, be-
ginning from gradient pair assignment, critical point identification,
computing 1-saddle — 2-saddle connections, and computing the
saddle-extrema arcs. We perform detailed experiments to compare
performance against pyms3d [3], [34], [35] and TTK [39], which
report the best runtimes for computing the MS complex on shared
memory processors. We also perform experiments to analyze the
effectiveness of the various steps of the parallel algorithm and
to study the available parallelism for the different computational
steps.

All experiments are performed on an Intel Xeon Gold 6130
CPU @ 2.10 GHz powered workstation with 16 cores (32 threads),
32 GB RAM, and an Nvidia GeForce GTX 1080 Ti card with
3584 CUDA cores and 11 GB RAM. We use CUDA version
10.1 and its inbuilt Thrust and cuSPARSE libraries. We set the
number of CUDA threads per block as 512 with 64 blocks in a
grid, and use an identical set of parameters and best optimization
flags for pyms3d and TTK. We use the open source script available
for TTK to run the comparative experiments. We note that the
methods described by Gyulassy et al. [18], [19], [21] and Bhatia et
al. [7] focus on improving geometric accuracy, thus yielding larger
runtimes. All experiments are performed on popular volumetric
simulation and imaging datasets [4].

We also compare runtimes of our OpenMP based parallel
simplification with prior work. For these experiments, we enable
Intel Turbo Boost Technology to ensure optimal CPU parallel
performance. Finally, an extensive collection of sanity checks and
visual comparisons ensure correctness of the results.

5.1 MS complex computation : runtime comparisons

We studied the runtime performance of pyms3d and found that
assigning gradient pairs and marking (computing+saving) critical
points account for up to 34.4% (Angio) of the total MS complex
computation time and computing extrema paths accounts for up to
4% time (Fuel). In contrast, marking reachable saddle-saddle pairs
requires up to 68.5% time (Neghip) due to its serial nature and the
gradient path counting step requires up to 63% (Bonsai) due to
the use of coarse grained CPU parallelism, which is typically
affected by load imbalance issues and excessive serialization.
So, the saddle-saddle arc computation is indeed the bottleneck.
We also note that a large fraction of time within gradient pair
assignment and marking critical points is the step where critical
points are saved. We improve the runtime of this step with the aid
of data parallel primitives.

Total computation time. Table 1 compares the runtimes with
pyms3d and shows the speedup for individual stages of the
pipeline. We observe 4.8 to 8.6x speedup for the overall MS
complex computation for larger datasets. The parallel saddle-
saddle reachability algorithm performs better on all datasets,
achieving up to 577x speedup (Angio). The speedup increases
with the number of critical points as expected. The path count-
ing algorithm also performs better for larger datasets, achiev-
ing up to 5.4x speedup (Bonsai). In Silicium, Fuel, Neghip,

and Shockwave, the number of saddles and junction nodes is
multiple orders of magnitude smaller than those in the larger
datasets. The overheads of GPU transfer time and construction
of matrices dominate the runtime resulting in poor scaling. In
contrast, pyms3d processes each 2-saddle in parallel and each
traversal originating at a 2-saddle terminates early given the fewer
number of junction nodes. This is likely the reason for its superior
performance on these datasets. The number of junction nodes is
above this threshold in other datasets and gMSC is able to handle
the explosion in the number of gradient paths more effectively
than pyms3d. We find that gMSC outperforms TTK as well, for
all datasets except the small ones, with a speedup between 2x
- 6%, and a high of 26x (Aneurysm). We also note that TTK
outperforms pyms3d in many instances. While TTK cites the same
algorithm as pyms3d, we believe this superior performance can be
attributed to TTK leveraging parallelism effectively in all stages
of the computation, the use of cache efficient data structures, and
advanced memory management techniques.

Figure 9 shows the runtimes for all datasets and the speedup
obtained over pyms3d. With the exception of smaller datasets such
as Silicium, Fuel, Neghip, and Shockwave, gMSC outperforms
pyms3d for all other datasets, with significant runtime differences
for larger datasets. We observe speedups between 4.8 to 8.6
with the exception of Heptane. We note that gMSC runtimes do
not exhibit significant increase with an increase in dataset size
in contrast with pyms3d. We attribute this to pyms3d’s time con-
suming saddle-saddle reachability step and to its coarse grained
parallelism which causes an increase in the work per thread for
gradient path counting as the number of critical points (saddles)
increase. We also note that pyms3d performs relatively well with
Isabel and Heptane despite their sizes. gMSC encounters the largest
number of sparse matrix multiplications (730) in Isabel. The minor
speedup in Heptane could be due to the significantly high path
multiplicities (order of 10'%) in multiple saddle-saddle paths and
the denser matrices (larger number of junction nodes and critical
points) resulting in more time required for each matrix operation.

Runtime for individual steps. Figure 10 shows the contributions
of the key steps of the algorithm towards the overall runtime.
The saddle-saddle path computation dominates the computational
runtime and is the key contributor towards the overall speedup.
Runtimes for assigning gradient pairs, computing critical points,
and computing extrema connections are equal because pyms3d
and gMSC implement the same algorithm with the only difference
being that the former uses OpenCL and the latter uses CUDA. Fur-
ther, the runtimes for these steps is a small fraction of the overall
runtime. Assigning gradient pairs in gMSC takes a larger runtime
of roughly 0.1 seconds for the smaller datasets, when compared
to pyms3d. We suspect this consistent, irreducible runtime to be
due to the underlying data structure setup time on CUDA, which
is not offset by sufficient parallel work available in these datasets.
Saving critical points on the CPU is a bottleneck in pyms3d. gMSC
achieves speedup of up to 8.5x (Angio) for this step. The stacked
bar chart shows that the saddle-saddle reachability and gradient
path counting steps in pyms3d are its biggest bottlenecks. gMSC
achieves significant improvements to these two steps.

We observe that the number of junction nodes is always
comparable to the number of critical points, leading to sufficient
parallelism in larger datasets for both saddle-saddle reachability
and gradient path counting steps. Smaller datasets have fewer
critical points and junction nodes which prevents them from
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Dataset Size Number of | gMSC TTK | gMSC-TTK pyms3d gMSC-pyms3d Speedup
Critical Points | (secs) | (secs) Speedup [34] (secs) | Overall | Parallel BFS | Path Counting
Silicium 98x34x34 1345 0.31 0.16 0.5 0.07 0.2 14.5 0.1
Fuel 64 x64x64 783 0.33 0.28 0.9 0.05 0.1 29 0.1
Neghip 64 x64x64 6193 0.37 0.34 0.9 0.28 0.8 23.0 0.3
Tooth | 103x94x161 827973 1.48 3.08 2.1 7.88 53 318 2.8
Hydrogen | 128x128x128 26725 0.56 3.37 6.0 091 1.6 32.6 0.5
Shockwave 64x64x512 2477 0.46 1.71 3.7 0.17 0.4 5.2 0.1
Lobster | 301x324x56 1201727 3.04 8.35 2.7 15.44 5.1 104.2 29
Ventricles | 256x256x124 6073455 8.39 | 19.66 2.3 56.07 6.7 558.3 35
Engine | 256x256x128 1541859 5.17 | 10.95 2.1 24.98 4.8 134.1 23
Bonsai | 256x256x256 567133 542 | 19.04 35 38.58 7.1 92.7 5.4
Aneurysm | 256x256x256 97319 1.21 | 31.37 26.0 7.70 6.4 66.3 52
Foot | 256x256x256 2387205 8.21 | 20.69 2.5 47.75 5.8 152.3 35
Turbulence | 256x256x256 1474891 492 | 17.27 35 42.11 8.6 361.5 35
Skull | 256x256x256 5786993 | 1293 | 27.17 2.1 75.57 5.8 343.0 2.6
Angio | 416x512x112 17811553 | 22.60 | 61.44 2.7 165.88 7.3 571.1 3.7
Isabel-Precip | 500x500x100 1705641 7.56 | 25.93 34 37.36 4.9 86.6 2.0
Heptane | 302x302x302 207431 1429 | 4743 33 15.81 1.1 79.7 0.6

TABLE 1

Runtime performance comparisons between the GPU parallel algorithm gMsc, pyms3d [34], [35], and TTK [39]. We observe good speedup in
runtime on most datasets. In comparison with pyms3d, both saddle-saddle reachability and gradient path counting algorithms contribute to the
improved running times. The saddle-saddle reachability algorithm shows speedup for all datasets (2.9x to 577.7 x), the gradient path counting

algorithm has speedup for all larger datasets (2x to 5.4x).
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x-axis). gMsc outperforms pym3d for all large datasets, with significant runtime differences and speedups between 4.8x and 8.6x. Runtimes for
gMsc do not increase significantly with dataset size, unlike pyms3d, thus indicating good scalability.
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Runtime comparisons between gMsc and pyms3d for each stage of the computational pipeline. Runtimes are shown in three charts to

facilitate comparisons because they vary significantly between datasets. The datasets are placed in increasing order of size within each chart.
We observe significant improvements to saddle-saddle (SS) reachability and path counting steps, which are the major bottlenecks in pyms3d for
large datasets. gMSC populates the data structures containing critical points, saddle-saddle (SS), and saddle-extrema (SE) arcs in parallel. All
computationally expensive stages of the pyms3d pipeline are improved in gMSC, while retaining the efficient stages.
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fully exploiting the available parallelism. For example, the saddle-
saddle reachability step in gMSC outperforms pyms3d by a large
factor but the gradient path counting step becomes a bottleneck
for Silicium, Fuel, Neghip, Hydrogen, Shockwave, and Heptane.

The time taken to populate the MS complex data structure on
the CPU is not included in the runtimes reported for computation.
Figure 10 shows runtimes for populating the data structures that
store saddle and extrema paths. gMSC populates the data structures
in parallel on the CPU whereas pyms3d populates them serially.
We note that this population is a bottleneck in many datasets, with
the exceptions of datasets that are small in terms of size or number
of critical points such as Silicium, Fuel, Neghip, Shockwave,
Aneurysm and Heptane. Our saddle-saddle arc and saddle-extrema
arc population routines achieve speedup up to 4.5x (Bonsai) and
5.4x (Engine and Turbulence).

5.2 MS complex computation : performance analysis

The speedups achieved by gMSC are due to the fine-grained paral-
lelism that it leverages at each stage of the computational pipeline.
We now present results of our investigation on the available
parallelism at different steps of the computation. This investigation
helps us prioritize efforts towards runtime improvement and study
the efficiency of the algorithm and its implementation.

Junction nodes and saddle statistics. The efficiency of the
parallel BFS, DAG minor construction, path counting, and matrix
multiplication operations relies on the number of junction nodes
and saddles, which determine the available parallelism. We collect
statistics on these nodes for all datasets and the results inform our
choice between CPU and GPU parallelism. We provide a summary
of our findings here. The detailed statistics are available in Table 1
in the supplementary material.

We observe that the number of junction nodes often exceeds
the number of critical points for all dataset sizes, sometimes by an
order of magnitude. There are a few exceptions (Tooth, Ventricles,
and Angio) where the counts are comparable. The number of
saddles and the total number of critical points are comparable,
which implies that the number of extrema are orders of magnitude
smaller. pyms3d executed path counting in parallel across all 2-
saddles on the CPU, which led to a serialized tracing of long paths
within each thread. The large number of junction nodes indicates
a good fit for fine-grained parallelism on the GPU, thus motivating
our design of the DAG minor construction and the GPU path
counting algorithms. We also note that the number of junction
nodes is sufficiently large to exploit GPU parallelism. In smaller
datasets, the benefit from the parallelism is not significant enough
to result in a good overall speedup. The number of junction nodes
also helps quantify the extent of exponential growth in the number
of paths between saddles.

Matrix sparsity. The number of junction nodes and saddle critical
points also determines the sizes of the matrices obtained from
the DAG minor construction, which in turn impacts the memory
utilization. The sparsity ratio is the ratio of the number of zero
valued entries in the matrix to its total size. We analyze all input
and output matrix sparsity ratios. We study the sparsity ratios of
the input matrices A5 j, Bj - , B* j—25»and Dy 5 obtained from
the DAG minor construction. Detailed numbers are in Figure 1 in
the supplementary material.

The sparsity ratios of matrices Aj;— ; and B* j—2s are nearly
identical. B;_ ; displays the highest sparsity ratios indicating its
highly sparse nature across all datasets, whereas the final output

matrix displays a low sparsity ratio. We notice an overall increase
in sparsity ratio with an increase in dataset size. Smaller datasets
exhibit lower sparsity ratios, with the exception of Tooth, whose
behavior may be attributed to noise (it contains a disproportion-
ately large number of critical points and junction nodes). Among
large datasets, we note highly sparse matrices with the exceptions
of Aneurysm and Heptane, which are cleaner datasets and contain
fewer number of critical points.

Matrix multiplication statistics. The iterative multiplication of
Ajs_j and B;_; is a bottleneck in the matrix operations. The
number of iterations depends on the length of the path between a
source 1-saddle at level-0 and the destination junction node at the
highest level in the DAG minor. The length of this path directly
impacts the running time of the matrix operations, hence we study
this statistic for all datasets. Detailed statistics are available in
Table 1 of the supplementary material. We observe small path
lengths in smaller datasets like Silicium, Fuel, Neghip, and Tooth.
Path lengths become longer for the larger datasets, resulting in a
maximum of 730 iterations required for the Isabel-Precip dataset.
Some exceptions include datasets such as Ventricles, Turbulence,
and Angio which display shorter paths despite their size. If we
consider the number of critical points as the point of comparison,
Shockwave displays a large number of iterations for a smaller
number of critical points. In contrast, Tooth contains a large
number of critical points, but requires few iterations. Ventricles,
Turbulence, and Angio display shorter paths from the perspective
of critical points as well.

Memory usage. The size of datasets that gMSC can handle is
dictated by the available GPU memory. We performed experiments
on six datasets to understand the memory footprint and limits on
data size that can be handled. The package gpustat [6] was used to
monitor real-time usage of GPU memory, which in turn helped es-
timate memory consumption statistics (see Table 4 of supplemen-
tary material). The GPU memory available to gMSC was found to
be between 8—11 GB, after accounting for background processes.
Experiments on all six datasets showed a 100% memory usage.
We estimated the memory consumed by noting the sizes of data
structures allocated on the GPU up to the point of termination.
Total memory allocated in some cases exceeds 11 GB because
this count includes memory allocated for data structure that are
freed after use. The biggest consumption of memory is due to
arrays that store the input scalar field (up to 9% of total memory),
gradient pair information (up to 18%), critical points and attributes
(30%-80%), source saddle information and visited flags (~60%).
The size of these arrays are directly proportional to the size of the
dataset. One approach towards addressing this memory limitation
is to partition the data into chunks, compute the MS complex for
each chunk, and stitch the pieces together [34] but extending this
approach to the GPU remains a challenge.

5.3 MS complex simplification : performance analysis

We quantify the performance of the parallel MS complex simplifi-
cation algorithm by considering the runtimes, residual number of
critical points, residual arcs, and the residual number of strangula-
tion configurations (whose persistence is below the simplification
threshold). We observe that our parallel algorithm outperforms its
serial counterpart in pyms3d with respect to runtimes for all large
datasets while achieving equivalent quality as quantified by the
above-mentioned counts. Figure 12 shows the saddle-maximum
arcs from the simplified MS complex for a few datasets.
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Fig. 11. Runtime comparison between gMsc and pyms3d for MS complex simplification for increasing dataset sizes (left to right). gMSc outperforms
pyma3d for all large datasets with the exception of Angio and Heptane. We observe speedups up to 13.2x (Bonsai).

(d)

(c)

Fig. 12. Saddle-maximum arcs in the simplified MS complex. Ascending
arcs between 2-saddles (green) and maxima (red) overlaid on the vol-
ume rendered field for (a) Fuel, (b) Silicium, (c) Heptane, and (d) Neghip
datasets.

Among the four configurations discussed in subsection 4.2,
non-conservative cancellation together with the XX + YY + ZZ
sequence of subdivision emerged as the best performer. A partition
into two subgrids in each iteration yielded the best runtimes.
We discuss the performance of this configuration below. Detailed
analysis of the remaining three configurations are available in
Figures 3 and 4 in the supplementary material.

Simplification time. Figure 11 shows the runtimes for gMSC ’s
parallel MS complex simplification in comparison with pyms3d’s
serial simplification. Small datasets such as Silicium, Fuel,
Neghip, Tooth, Hydrogen, Shockwave and Lobster show minimal
or no improvements due to their small sizes enabling efficient
serial simplification. We also observe a prominent increase in
strangulations below the 5% threshold in Hydrogen and Lobster
for all configurations in parallel simplification. All other datasets
with the exception of Angio and Heptane show significant run-
time improvements, with a maximum speedup of 13.21x seen

in Bonsai. We suspect Angio’s large size and structure to be
contributing factors towards a large number of residual arcs and
strangulations (see Figure 13), which indicate poor progress in
simplification and a resulting runtime cost. Heptane is a relatively
cleaner dataset with most critical points getting cancelled easily,
resulting in fewer residual critical points, arcs and strangulations.
In such clean datasets, serial simplification performs well. We also
note that the geometric distribution of critical points could lead
to load imbalance in the subgrids. For example, in Heptane, we
notice a cluster of critical points in the centre, see Figure 12 (c),
and the subgrid runtimes further indicate a serialized cancellation.

Residual critical points. We count the number of critical points
after simplification for a quantitative comparison and perform a
visual overlay for multiple persistence thresholds to determine the
efficacy of the parallel simplification. Figure 13 plots the residual
number of critical points in the larger datasets for the serial
simplification, parallel simplification across subgrids (parallel),
and parallel simplification across subgrids followed by serial
simplification of all critical point pairs that were not canceled
(PS). All methods use a 5% persistence threshold. We observe
similar counts after serial and PS simplification. Statistics for other
datasets is available in Figure 2 in the supplementary material. We
attribute the larger number of residual critical points in Hydrogen,
Lobster, and Turbulence to the creation of several strangulations.
Note that the parallel cancellation step tends to result in a larger
residual number, especially in smaller datasets such as Fuel and
Neghip. This effect is neutralized after the subsequent serial
cancellation.

Residual arcs. Next, we compare the number of residual arcs in
the MS complex. Figure 13 shows a close match among all large
datasets except Angio, which contains a larger number of residual
arcs after parallel simplification. The number of residual arcs is
smaller in Bonsai, Isabel, and Aneurysm. We attribute the larger
number of arcs in Lobster and Turbulence to the presence of a
large number of strangulations after cancellation in parallel across
subgrids. We observe an increase in the number of residual arcs
after parallel cancellation in all small datasets, which is neutral-
ized by the subsequent serial cancellation. Detailed statistics are
available in Figure 2 in the supplementary material.

Strangulations below the persistence threshold. We compute
and compare the number of strangulation configurations below
a 5% threshold in the simplified MS complex. This count is a
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Fig. 13. Plot of the residual number of critical points, arcs, and stran-
gulations (whose persistence is below the threshold) in the simplified
MS complex for both serial and parallel simplification (5% threshold).
PS denotes the execution of parallel simplification using the (XX + YY
+ ZZ) sequence of subdivision, followed by serial simplification. It is
well established that the sequence of cancellation affects the residual
numbers [22]. (top to bottom) All large datasets show good matches for
residual critical points. The number of residual arcs also match closely
with the exception of Angio, which show an increase in PS. Residual
arcs in Bonsai and Isabel are fewer in PS than in serial simplification.
The number of strangulations are comparatively larger after PS simplifi-
cation, with a few exceptions.

measure of how difficult it is to further simplify the MS complex.
As a baseline, we compute this parameter before applying the
cancellation operations (no simplification). Figure 13 shows that
the two methods produce similar number of strangulations in the
larger datasets. Angio, Turbulence, and Lobster contains a higher
number of strangulations when simplified in parallel. The counts
after parallel cancellations are mildly higher in Skull and Engine
and lower in Bonsai, Aneurysm, and Isabel. The counts (PS) are
similar in smaller datasets even though they are larger after parallel
cancellation. Figure 3 in the supplementary material compares the
number of strangulations for all configurations. The XX + YY
+ ZZ sequence of subdivision together with the non-conservative
approach for canceling arcs in the constraint region consistently

performs better.

Distribution of critical points. We compare the distribution of
different types of residual critical points, both quantitatively and
visually (Figure 3 in supplementary material). Many datasets ex-
hibit nearly identical results for the serial and parallel approaches.
In some datasets (Engine, Hydrogen, Lobster, Skull, Tooth and
Turbulence), we observe that the number and positions of minima
and maxima match well but the number of saddles is larger after
parallel simplification (PS), with a correspondingly larger number
of strangulations. We suspect that many of the strangulations are
saddle-saddle connections. The presence of these strangulations
adversely affects the runtimes in smaller datasets. We attribute
this to the excess time spent towards the creation of these arcs and
how their presence affects progress in the simplification process.

6 CONCLUSIONS

We have introduced a novel parallel algorithm that computes the
MS complex of a 3D scalar field defined on a grid. It is the
first completely GPU parallel algorithm developed for this task
and results in superior performance with notable speedup. Our
approach is the first of its kind to leverage data parallel primitives
coupled with matrix multiplication as a means of gradient path
traversal. The algorithm follows an approach to parallelism that
avoids locks or synchronization. We also introduce a data parallel
algorithm for MS complex simplification which achieves superior
runtimes for the relatively larger sized data in our test set while
providing an improved or comparable quality of the simplified
complex. Parallel approaches to MS complex simplification have
not been reported earlier even though fast methods are available
for topological simplification of scalar fields [27]. Developing
these methods towards improved parallel algorithms for MS com-
plex is an interesting topic for future work.
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