

Edit Distances for Comparing Merge Trees

Raghavendra Sridharamurthy, Adhitya Kamakshidasan, Vijay Natarajan

Visualization and Graphics Lab, Department of Computer Science and Automation,

Indian Institute of Science, Bangalore.

http://vgl.csa.iisc.ac.in ; {raghavendrag, adhitya, vijayn}@iisc.ac.in

Problem Statement

Motivation

Design a distance measure to compare merge trees [CSA 2003].

- Prove theoretical guarantees.
- Provide efficient implementation.
- Applications to time-varying data. \bullet
- Applications to feature tracking.

- **Applications**
- Topological shape matching.
- Symmetry and similarity detection in scalar fields.
- Feature tracking in timevarying data.
- Comparison between simulated and measured data.

Why merge trees?

- Features in real data are either at local minima/maxima.
- Simple to implement.
- Easy mapping between regions in the domain and tree
 - components.

strategy.

Well defined simplification

Challenges

• Efficiency: Theoretical vs Practical.

• Noise: Small perturbations in the field results in significant changes in the tree structure.

• Guarantees and Properties: Hard to prove

- Metric properties
- \succ Stability
- > Discrimination

Background

Tree Edit Distance based Measure

Results and Future Work

Periodicity in time-varying data

Data: Bénard von Kármán vortex street, 2D flow

Detecting symmetry/asymmetry

Data: Synthetic data, contains both regions of symmetry and asymmetry. **Features:** Merge trees of the regions (a, ..., g). **Experiment**: Find whether D is effective in capturing the symmetry/asymmetry.

- around a cylinder; $[400 \times$ 50], 1001 timesteps; Source: Weinkauf [2010].
- Features: Local maxima capture the vortex centres.
- **Experiment:** Study periodic vortex shedding, with known periodicity of 75. Key result: We use our distance measure D and

75.

Timesteps 0 and 74 of vortex street dataset with the corresponding split trees.

Result: $D \approx 0$ for symmetric regions (for example D(c, d)), D > 0 in other cases (for example D(c,b) = 0.53) which is consistent with the premise of data synthesis.

Future Work

- Prove theoretical properties/guarantees.
- Introduce spatial overlap to enhance discrimination.
- Improve the efficiency, both in theory and in practice.

Acknowledgements

We thank the members of VGL for suggestions and active discussions. We acknowledge support from the Department of Science and Technology, India (DST/SJF/ETA-02/2015-16) and from the Joint Advanced Technology Programme, Indian Institute of Science (JATP/RG/PROJ/2015/16)

- [CSA 2003] H. Carr, J. Snoeyink, and U. Axen, "Computing contour trees in all dimensions," Computational Geometry, vol. 24, no. 2, pp. 75–94, 2003.
- [Xu 2015] H. Xu, "An algorithm for comparing similarity between two trees," arXiv preprint arXiv:1508.03381, 2015.
- [ELZ 2000] H. Edelsbrunner, D. Letscher, and A. Zomorodian. "Topological persistence and simplification". In Procs. 41st Annual Symp. on FOCS, pages 454–463., 2000.
- [Touzet 2003] H.Touzet."Tree edit distance with gaps". Information Processing Letters 85(3):123–129, 2003.