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ABSTRACT

The contour tree is a topological structure associated with a scalar
function that tracks the connectivity of the evolving level sets of the
function. It supports intuitive and interactive visual exploration and
analysis of the scalar function. This paper describes a fast, parallel,
and memory efficient algorithm for constructing the contour tree of
a scalar function on shared memory systems. Comparisons with
existing implementations show significant improvement in both the
running time and the memory expended. The proposed algorithm
is particularly suited for large datasets that do not fit in memory.
For example, the contour tree for a scalar function defined on a 8.6
billion vertex domain (2048 x 2048 x 2048 volume data) can be
efficiently constructed using less than 10GB of memory.

Index Terms: 1.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling

1 INTRODUCTION

Scientific data obtained from simulations and measurement devices
is often represented as a scalar function over a two, three, or higher
dimensional domain. The contour tree tracks topology changes in
level sets of a scalar function defined on a simply connected do-
main, and serves as an abstract representation of the data. It is
obtained by mapping each connected component of a level set to a
point, see Figure 1. The effectiveness and usefulness of this repre-
sentation is well established in the literature. In this paper, we pro-
pose a parallel algorithm for fast and memory efficient construction
of the contour tree to facilitate its application to large data sizes.

1.1 Motivation

The contour tree is one of the most extensively studied and devel-
oped topological structures in the visualization literature. In par-
ticular, it has been widely applied in the context of volume visual-
ization — for transfer function design [10, 15, 30, 38, 41], efficient
computation of isosurfaces [35], and for effective and flexible ex-
ploration of isosurfaces [5]. Following its successful application
to volume data visualization, several recent efforts have demon-
strated the use of the contour tree for visualization of high dimen-
sional data [16, 23, 24]. The power of this abstract representation
is clearly demonstrated in its application to volume data analysis —
feature extraction and tracking [3, 12, 37], symmetry and similar-
ity detection [27, 32], comparative visualization [28], and volume
segmentation [29]. The contour tree has also been applied to solve
problems in computer graphics and computer vision such as surface
segmentation [17], parametrization [40], model repair [39, 33], and
skeletonization [22, 34]. The above list of applications motivates
the development of fast algorithms for computing the contour tree.
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Figure 1: A height function and the corresponding contour tree. The
i critical point in increasing order of function value is labeled c;.

The rapid growth in compute power has facilitated the genera-
tion of higher fidelity simulation data and higher resolution imag-
ing data, which in turn has resulted in a massive increase in the
size of the datasets. Topology-based methods were developed with
the aim of enabling analysis and visualization of these large datasets
by providing abstract representations of the key features in the data.
However, the construction of the topological structures is now in-
creasingly becoming a bottleneck. This necessitates the develop-
ment of efficient algorithms that can additionally handle large data
sizes. Further, the auxiliary memory required by these algorithms
is often proportional to the size of the input. So, it is imperative to
ensure that the algorithm has a reasonably low memory footprint.
A related development is that of multicore and manycore CPUs be-
coming ubiquitous. It is highly desirable that new algorithms for
computing the contour tree leverage their power. We address the
above-mentioned challenges to design a parallel and memory effi-
cient algorithm for computing the contour tree of a scalar function
defined on a volume grid.

1.2 Related Work

The contour tree was first formulated in its current form by de Berg
and van Kreveld [9] to answer elevation queries in GIS applica-
tions. They describe an algorithm that employs a divide and con-
quer strategy to compute the contour tree of a scalar function de-
fined on a two-dimensional domain in O(nlogn) time, where 7 is
the number of triangles in the input. van Kreveld et al. [35] devel-
oped an algorithm that maintained evolving level sets in order to
compute the contour tree in O(nlogn) for two-dimensional input,
and in O(nz) time for three-dimensional input. Tarasov and Vya-
lyi [31] described an improved algorithm that computes the contour
tree of a three-dimensional scalar function in O(nlogn) time. This
algorithm performs two sweeps over the input in decreasing and in-
creasing order of function value to identify the joins and splits of
the level set components. The contour tree is computed by merging
the results of the two sweeps.

Carr et al. [4] simplified this approach to develop an algorithm
that is arguably the most elegant and widely used algorithm for
computing the contour tree. This algorithm computes a join tree and



a split tree in two sweeps over the input by tracking the evolution
of sub-level and super-level sets, respectively. These two trees are
then merged to obtain the contour tree. This algorithm has a running
time of O(vlogv+no.(n)), where v is the number of vertices in the
input, n is the number of tetrahedra and « is the inverse Ackermann
function. Chiang et al. [6] proposed an output sensitive approach
that first finds all component critical points representing nodes in
the contour tree by querying the local neighborhood. Monotone
paths are constructed from these critical points, and later merged
to construct the join and split trees containing only the component-
critical points. Their algorithm has a running time of O(tlogz +n),
where ¢ is the number of critical points of the input. Van Kreveld
et al. [36] showed a Q(zlogr) lower bound for the construction of
contour trees. Since reading the input takes O(n) time, the output
sensitive algorithm is optimal. The contour tree may be considered
as a special case of a Reeb graph [26] when restricted to simply
connected domains. The Reeb graph may contain cycles and the
above algorithms typically do not apply. Algorithms for comput-
ing the Reeb graph can, by definition, be no faster than those for
computing the contour tree [2, 11].

Pascucci and Cole-McLaughlin [25] proposed the first known
parallel algorithm that computes the contour tree of a piecewise
trilinear function defined on a three dimensional structured mesh.
The sequential version for a 3D structured grid has a time com-
plexity of O(n+tlogn), where n is the number of vertices and ¢
is the number of critical points. The volume is recursively subdi-
vided into two halves of roughly equal number of vertices, with the

common boundary (the separator) consisting of O(n%) vertices and
edges. The algorithm essentially computes the contf tree for each
voxel and merges them to eventually obtain the contour tree over
the entire domain. While the actual running times are unavailable,
the authors report that the algorithm scales well and exhibits linear
speedup with increasing number of processors. Although this algo-
rithm is well suited for coarse grained parallelism, computing the
contour tree for each voxel individually may result in huge over-
heads.

Maadasamy et al. [19] describe an output sensitive, work ef-
ficient, shared memory, parallel implementation that computes
monotone paths similar to Chiang et al. [6] but ensure that the com-
putation is efficient for parallel architectures. They compute the
monotone paths in parallel and arbitrary order rather than sequen-
tially to compute the contour tree. Although the method scales well
for small unstructured grids, the speedup decreases significantly
for large structured grids as the number of available processors in-
crease. Moreover, the required memory to compute the contour tree
is huge owing to the additional auxiliary structures needed to com-
pute the join and split tree. We describe an algorithm for shared
memory architectures that addresses these weaknesses with a focus
on structured grids.

A recent approach towards computing the join and split tree in
parallel by Morozov and Weber [20, 21] proceeds by constructing
the local join tree or split tree on each processor and merging them
across sub-domains. However, each processor stores only the lo-
cal tree corresponding to the sub-domain and a small subset of the
global join / split tree. This method is best suitable for distributed
memory systems with the final join and split trees being distributed
across nodes. The final computation of the contour tree and even
the applications requiring a contour tree have to be significantly
modified to work in a distributed memory paradigm. Our proposed
shared memory algorithm may be used to compute the local tree
within a single node in a multiprocessor environment and hence
improve the running time of this distributed algorithm.

A paper simultaneously communicated by Langde et al. [18] de-
scribes a distributed algorithm for computing join and split trees.
Local trees are built for each sub-domain together with a bound-
ary tree for each sub-domain. The boundary tree aids in reducing

communication cost when the local trees are stitched together. A
pruning step similar to the one that we propose helps reduce the
size of the tree and hence reduces memory requirement. Again,
our shared memory algorithm may be used within a single node in
conjunction with such a distributed algorithm.

1.3 Contributions

In this paper, we describe a fast and memory efficient parallel algo-
rithm for computing the contour tree of a piecewise trilinear func-
tion defined on a large structured grid. The algorithm employs
a novel hybrid approach by tracing monotone paths from critical
points to compute local join and split trees within different sub-
domains, and stitching these trees together using a sequence of
union-find operations. While the two approaches have been inde-
pendently proposed earlier, the hybrid approach is crucial in deter-
mining the scalability of the parallel algorithm and its memory effi-
ciency. The algorithm is output sensitive, which essentially means
that it computes small contour trees faster and requires more time
only for the larger ones. A well engineered pruning step and stitch-
ing procedure further reduce the memory footprint of the algorithm
and improves scalability, respectively.

Experimental results show significant improvements in terms of
time and memory over the existing parallel algorithms. The con-
tour tree for a dataset containing 8.6 billion vertices (2048 x 2048 x
2048 volume) can be constructed within 3 minutes in a 64-core
shared memory environment. In an 8-core environment, the algo-
rithm uses no more than 10GB of memory and computes the tree in
approximately 14 minutes.

2 BACKGROUND

In this section, we introduce the necessary definitions of Morse
functions and level set topology [13] that are required to define the
contour tree and to describe its construction in the following sec-
tion. Scalar fields are typically available as a sample together with
a mesh representation of the domain. The domain is often repre-
sented as a structured grid in many applications.

Let S be a structured grid and f denote a scalar function defined
on the domain D represented by S. The function f is available as
a sample at vertices of S and is extended via trilinear interpolation
to the interior of the grid cells. A level set f~'(a) is the set of all
points in D having function value equal to a. A sub-level set is
the set f~!(—oo,a] consisting of points having function value less
than or equal to a. Similarly, f~! [a,0) is called a super-level set.
As we sweep across a range of function values, the connectivity /
topology of the corresponding level sets change. Points at which
the topology of the level sets change during this evolution are the
critical points of the function. Points that are not critical are called
regular points.

A connected component of a level set is called a contour. Given
two points x,y € D, we say x ~ y iff they belong to the same con-
tour. The contour tree is defined as the quotient space D/ ~ that
glues all points that are equivalent under the binary relation ~. In
other words, every contour is represented by a point in the contour
tree. Figure 2 shows multiple level sets extracted from a synthetic
scalar function defined on a structured grid and Figure 3 shows the
corresponding contour tree. Each contour maps to a different arc
in the contour tree. The contour tree expresses the evolution of the
connected components of the level sets as a graph whose nodes cor-
respond to critical points of the function. A new contour appears at
minimum (blue), contours merge or split at a saddle (green), and
a contour disappears at a maximum (red). The join tree tracks the
evolution of sub-level sets and the split tree tracks the evolution of
super-level sets.
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Figure 3: The contour tree for the analytic function shown in Figure 2. (a) Level sets at different function values (b) The contour tree tracks the
evolution of connected components of the level sets. (c) The split tree tracks connected components of the super-level sets. (d) The join tree

tracks connectivity of sub-level sets.

Figure 2: An analytic function sampled on a structured grid and a
visualization that shows multiple level sets of the function. Each level
set consists of one or more connected components.

3 ALGORITHM

We now describe our parallel algorithm for computing the contour
tree of a scalar field defined on a volume grid. We assume that the
function values at the vertices are unique. This may be achieved via
a simulated perturbation using the index of the memory location
corresponding to a vertex. Key steps in the algorithms are listed
below and described in detail subsequently.

1. Split the domain into sub-domains of appropriate size and as-
sign the sub-domains to different processors.

2. Identify the critical points within each sub-domain.
3. Compute the local join tree split tree for each sub-domain.

4. Prune the representation of the local join and split tree com-
puted in the previous step by identifying and removing nodes
that do not correspond to a change in the number of contours.

5. Stitch the local join and split trees across neighboring sub-
domains hierarchically to construct the global join and split
tree for the entire domain.

6. Merge the global join and split tree to construct the global
contour tree.

3.1 Splitting the domain

We decompose the domain into sub-domains following an octree
based subdivision. The sub-grid representing a sub-domain is sub-
divided into two parts at every iteration along the largest dimen-
sion. The two resulting sub-grids share a common plane. For ex-
ample, given a grid § with dimensions (din,,dimy,dim;), where
dimy > dim, > dimg, it is sub-divided in the first iteration into two
sub-grids Sy and S, with dimensions ([dimy/2],dimy,dim;) and
(dimy— [dimy /2] +1,dimy,dim;). The sub-grids share a plane par-
allel to the YZ plane. Sy and S are further subdivided and after i
iterations, S is subdivided into 2' sub-grids, which are processed in
parallel by different processors.

3.2 Identifying critical points

We classify points as critical or regular based on local behavior of
the scalar field. Edelsbrunner et al. [14] consider piecewise linear
functions and provide a combinatorial characterization of its critical
points, which are always located at the mesh vertices. While max-
ima and minima of piecewise trilinear functions are always located
at vertices, saddles may also be located within a face of a cell or
within its body. The presence and number of these face saddles and
body saddles within a cell can be determined using a combinato-
rial method [25]. Subsequent steps of the algorithm require the list
of vertices together with locations of critical points and edges con-
necting them to their neighborhood. We insert the face and body
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Figure 4: Points classified as saddles in a sub-domain. (a) The green
point represents an interior saddle with two upper link components
(red) and one lower link component (blue). The lower link component
lies on a plane normal to one of the axes and the two upper link
component on either side. (b) A point on the boundary with one upper
link component (red) and one lower link component (blue) within the
sub-domain. It is classified as critical because it is @ minimum of the
function restricted to the boundary plane.

saddles into the vertex list and include edges to vertices in the face
or the cell.

The link of a vertex in the original structured grid is the triangula-
tion of its neighboring six vertices that consists of a triangle within
each of the eight cells incident on the vertex. The link of a face /
body saddle is the set of its neighboring mesh vertices together with
the induced edges and triangles. Link vertices with lower function
values together with the induced edges and triangles form the lower
link. Similarly, link vertices with higher function values together
with the induced edges and triangles form the upper link. A ver-
tex is regular if its upper link and one lower link have exactly one
component. A vertex is a maximum if its upper link is empty and
a minimum if its lower link is empty. All other points are classified
as saddle.

A vertex in the input structured grid is a saddle only when its
lower (upper) link lies on a plane normal to one of the axes and
its upper (lower) link consists of two isolated vertices. Figure 4(a)
show such a saddle and the separating plane. The critical points
are identified within each sub-domain. While processing bound-
ary points, their neighborhood within the entire domain may have
to be considered to ensure correct classification. However, this re-
quires access to neighboring sub-domains. We avoid the associated
communication or memory costs by reporting boundary extrema as
potential critical points.

A critical point may not be classified correctly if the link is re-
stricted to the sub-domain only when the separating plane lies on
the boundary. Such a boundary point is an extremum on the bound-
ary plane. We insert all such boundary extrema to the list of critical
points. Some of these points may not correspond to nodes of final
contour tree and are pruned away. Figure 4(b) represents one such
boundary extremum.

3.3 Computing local join and split trees

We compute the local join tree by tracing monotone paths from
critical points and hence identifying connected components of sub-
level sets. This approach is similar to the one proposed by Chiang et
al. [6]. However, we optimize the method for structured grids and
further apply it only to construct the local join tree. Algorithm 1
describes the procedure to compute the local join tree.

The list of critical points available from the previous step is
first sorted according to their function values. The critical points
form the ground set for the procedure and are processed in increas-
ing order of their function values. The join tree corresponding to
F~1(—oo, f(ci)] is constructed when ¢; is processed. Therefore, af-
ter processing the critical point with highest function value, the lo-

Algorithm 1: ConstructJoinTree ()

Input: Set of critical points C = Uc;

Input: Mesh M

Output: Join tree Ty
1: Initialize the node set of 7j to C
2: UF < empty union find data structure
3: Sort C in ascending order
4: fori« 1to |C| do
5: Mark vertex c; as visited
6:  NewSet (¢c;,UF)

7 for each Lower Link component L; of ¢; do

8 Let R; be a vertex in L;

9 Follow a descending path P from R; until a visited vertex

w is hit
10: Insert pointers from every vertex in P to ¢;
11: Let ¢, be the vertex w is pointing to
12: ¢\ « Find(c,,UF)
13: if ¢/.  ¢; then
14: Add edge (c;, c)) to Ty
15: Union(c.., ¢;, UF)
16: end if
17:  end for
18: end for

19: return Join tree Ty

cal join tree corresponding to the sub-domain is fully constructed.
A union-find data structure is used to maintain connected compo-
nents of sub-level sets during the construction. The highest valued
vertex is chosen as its representative. Descending paths from the
critical point ¢; are constructed from each lower link component of
¢; until a previously visited vertex w is encountered. All vertices on
the paths are provided a pointer to ¢;. Next the pointer from w is fol-
lowed to find the critical point ¢, that already had a descending path
to w. Finally, we compute the union of the sets containing ¢; and ¢,
and insert an edge from c¢; to the representative of the component
containing c;.

For optimal performance and low memory utilization, we store
the join tree as a parent array. For example if J¢ is the array cor-
responding to the join tree then Jz[i] represents the parent of the
i critical point. We also store the corresponding children array to
enable faster access. This array is particularly useful in the sub-
sequent steps of the algorithm. The construction of the local split
tree is analogous to the construction of the local join tree, and pro-
ceeds by processing the critical points in decreasing order of their
function values and constructing ascending paths.

3.4 Pruning local join and split trees

In this step, we prune the local join tree and split tree for each sub-
domain in parallel. Pruning consists of identifying and removing
nodes that do not represent a change in the number of connected
components. If ¢; is a degree-2 node in the local join tree then
the number of connected components of the sub-level set does not
change when it crosses f(c;). Similarly, a degree-2 node in the split
tree contributes no additional information regarding the number of
super-level set components. Hence, a node that neither corresponds
to a join vertex nor to a split vertex can be safely pruned away. We
note that such nodes might represent other topological changes such
as a change in genus. Algorithm 2 describes the procedure to prune
the local join and split trees.

We do not prune the join and split trees independently. In other
words, we remove only those nodes that are degree-2 in both the
local join and split trees. We retain other degree-2 nodes because,
in the final step when two join and split trees are merged to con-
struct the contour tree, we require the location of such nodes from



Algorithm 2: PruneTrees ()

Input: List of critical points C, Join Tree 7; and Split tree Tg
Output: Pruned trees ¢; and #
1: for every vertex ¢; € C do
2. if ¢; is a degree-2 node in both T and Ts and does not lie on
the boundary then

3: Remove ¢; from C
4:  endif
5: end for

{Prune Join Tree}
6: for every vertex ¢; € C do
7:  if ¢; is the not the root of 7; then
8: pi + ci.JoinParent

9: while p; ¢ C do
10: pi < pi-JoinParent
11: end while
12: Add edge (pj,c;) tot;
13:  endif
14: end for
15: Delete T
{Prune Split Tree}

16: for every vertex ¢; € C do
17:  if ¢; is not the root of Ty then

18: pi < ci.SplitParent
19: while p; ¢ C do

20: pi < pi-.SplitParent
21: end while

22: Add edge (pj,ci) tots
23:  endif

24: end for

25: Delete Ty
26: return 7; and zg

both trees. We also preserve the boundary points because they are
required for correct stitching of the trees across the sub-domains.

This pruning step contributes to the huge memory savings
achieved by our algorithm. In our experiments, we observe that the
size of the local tree reduces by a factor of 5-10, depending upon the
dataset, after pruning. If the domain is divided into d sub-domains
and processed using p processors, then the memory requirement of
our algorithm is p/d times the maximum memory utilized by an al-
gorithm that does not partition the domain. We choose d such that
it is significantly larger than p and hence require only a fraction of
the maximum memory utilized by other algorithms. The memory
required for subsequent steps of the algorithm further reduces due
to the pruning.

3.5 Stitching local join and split trees

Local join and split trees of sub-domains that share a common
boundary are stitched together in parallel. A union-find data struc-
ture is again used to maintain connectivity. However, only the por-
tions of the trees affected by the boundary nodes are processed and
updated. This crucially determines the run time efficiency of the al-
gorithm. Algorithm 3 describes the stitching procedure for the join
tree. Split trees are stitched together using a similar procedure.

Let t; and tj; denote the local join tree of the adjoining sub-
domains Dy and D;. Let T; and T; be the list of nodes in7;; and ¢ 5.
The nodes in 77 and 75 are already sorted. We merge these sorted
lists in linear time to obtain a sorted list of nodes from 7; U T5.
Duplicate nodes are retained to avoid reorganizing the data struc-
tures. The duplicate nodes would appear next to each other in the
sorted list. We insert an edge between these duplicate nodes essen-
tially creating a new mesh M}, whose vertex set equals the nodes
in Ty UT, and whose edge sets are the union of the arc sets of ;|

Algorithm 3: StitchJoinTrees (¢;1,2;2)

Input: Sorted list of nodes 77 and 73
Output: Join tree 7;
1: Initialize ti<—tjUtjp
2: UF < empty union find data structure
3: T+ Merge(T1,T)
4: fori< 1to|T|—1do
5.  if v; and v;; are boundary duplicate points then
6: NewSet(v;, UF)
7 NewSet(v;11, UF)
8 Union(v;, vi+1, UF) making v; 1 as the head

9: v;.JoinParent <— v; |
10: Add v; to v;11.JoinChildrenList
11:  endif
12:  for each child ¢; of v; do
13: if ¢ is present in UF then
14: if v; is not present in UF then
15: NewSet(v;,UF)
16: end if
17: Delete ¢ from v;.JoinChildrenList
18: ¢ < FIND(c j»-UF)
19: if v; # ¢’ then
20: ¢’ JoinParent < v;
21: Add ¢’ to v;.JoinChildrenList
22: Union(c’,v;,UF) ensuring v; as the head
23: end if
24: end if
25:  end for
26: end for

27: return Join tree ¢;

and ¢ together with the newly inserted edges.

The join tree of the scalar function restricted to Dy U D is com-
puted as the join tree of M|, by maintaining a union-find data struc-
ture UF'. First, the nodes and arc sets of 7;1 and #, are merged. The
vertices of M|, are processed in sorted order. The first set is created
in UF when the first boundary node is processed. Subsequently, a
new set is created only when another boundary node is processed
or when a child of the node being processed belongs to UF. Union
operations are triggered in both cases. Note that the several nodes
of ¢j; and ¢, are not inserted into UF because they remain unaf-
fected after stitching. We observe in our experiments that the time
required for stitching is indeed roughly proportional to the number
of boundary nodes on the sub-domains.

Trees across adjoining sub-domains are stitched hierarchically
traveling up the domain decomposition octree. Independent stitch-
ing processes are scheduled in parallel. As the stitching proceeds
to move towards the root of the octree, the number of parallel jobs
naturally continues to decrease. The stitching process is top heavy
and does not scale well with the number of processors. In the fi-
nal iteration, we merge the trees across two halves of the domain
resulting in the global join and split trees.

Split trees can be processed similarly and stitched across the sub-
domains. In fact, when processors are available, we schedule the
stitching of the split trees in parallel with the stitching of the join
trees. We do not prune the duplicate vertices at the end of the step
and defer it to the final step instead. In practice, the final pruning
reduces the number of points in split and join tree by only about
5%. It is expensive to scan the entire tree to find degree-2 nodes and
therefore we avoid pruning the trees after every stitch operation.

3.6 Merging global join and split trees

The final contour tree is constructed from the global join and split
tree using a procedure similar to that described by Carr et al. [4].



Algorithm 4: MergeTrees ()

Input: Global Join tree 7; and Split tree T
Output: Contour tree 7,
G = Set of leaves in T and Ty

1:
2: while G # ¢ do
3 if ¢; is aleaf in T} or T then
4 Process c¢; and remove it from G
5: T = tree in which ¢; is a leaf
6: while ¢; # T .root and ¢; is not processed do
7 ni=c;
8: ¢; = parent vertex of ¢; in T
9: end while
10: Remove n; from T and G
11: Add arc(nj,c;) to T,
12: if ¢; is either a leaf in 7} or T; then
13: Addcito G
14: end if
15:  endif

16: end while

We present it here in a form that is amenable to a parallel implemen-
tation, see Algorithm 4. Each iteration of this procedure identifies
an arc of the contour tree that is incident on a leaf, removes the
arc from the join and split tree, and inserts it into the contour tree.
The procedure terminates when all arcs of the join and split trees
are processed. The running time of the sequential version is linear
in the number of critical points. The set of leaves are removed in
parallel in our implementation.

3.7 Analysis

We assume there are v vertices in the structured grid, 7 critical points
in the domain, and d number of sub-domains. Let¢;, i = 1..d, denote
the number of critical points present in the i sub-domain. Let b;
represent the number of boundary nodes classified as critical in the
i sub-domain.

Locating the critical points takes O(v) time as it takes con-
stant amount of time for every vertex to find the number of upper
link and lower link components. Chiang et al. [7] show it takes
O(v +rtlogt) time for constructing the join and split tree where
t is the number of critical points. Since the maximum number
of critical points processed within each sub-domain in Step 2 and
Step 3 is t; + b;, these two steps take O (v/d + (t; + b;) log(t; + b;))
time. Pruning the local join and split trees again takes O(t; + b;)
time. Stitching sub-domains D; and D; requires a maximum of
(ti+1j+b;+b;) unions and find operations, which can be per-
formed in (f;+1;+bi+bj) & (tj+1j+bi+b;) time [8]. This is
a very conservative estimate since the majority of the nodes remain
unaffected and hence are not processed by the union and find opera-
tions. The merging of the two sorted lists takes O (t,- +tj+bi+b j)
time. The final cleanup and the merging of the global join and split
tree to form the contour tree takes O(t) time.

The d sub-domains are stitched together in logd iterations

In the worst case, within each iteration, we process z =

t+3d3 -vi points in O(za(z)) time. If the algorithm is exe-
cuted sequentially, the net run time complexity is O(v + Z?:I (ti +
bi)log(t; + b;) + logd - za(z)) = O(v + zlogz + logd - zo(z)). If
d is much smaller than v and ¢, the sequential running time is

0<v+ <t+v§>1og (t+v§>>.

4 EXPERIMENTAL RESULTS

We evaluate our implementation, called DIvCT, on a shared mem-
ory system with 64 cores. All experiments were conducted on an
AMD Opteron 6274 processor with 64 cores running at 2.2GHz.

Data used for the experiments is fromhttp://volvis.organd
available on a structured grid. We first report run times for the se-
quential version of the algorithm where the entire data is processed
by a single processor. Next, we report run times for increasing num-
ber of processors. Finally, we compare the running times with an
existing parallel algorithm PARALLELCT[19], which computes the
contour tree in a shared memory system without partitioning the
domain.

4.1 Single core environment

On a single core environment DIVCT clearly performs better than
existing implementations for data that fits in memory. We com-
pare running times with LIBTOURTRE [1], a publicly available and
widely used serial implementation of the algorithm due to Carr et
al. LIBTOURTRE offers an implementation for structured grids. We
also report running times for PARALLELCT which also contains an
implementation for structured grids, see Table 1. Both D1vCT and
PARALLELCT are faster than LIBTOURTRE for structured grids.
This is expected because both DIVCT and PARALLELCT are out-
put sensitive. We also observe that running times of DIVCT are
comparable or better than PARALLELCT. This improvement over
PARALLELCT may be attributed to the additional computations in
PARALLELCT for constructing the auxiliary data structures.

4.2 Multi-core environment

For processing a dataset on p cores, we divide our domain into at
least 8p sub-domains. If the sub-domains are still large and do not
fit in memory, they are further partitioned. Ensuring a minimum
of 8p sub-domains results in a reasonable load balance among the
cores while computing the local join and split trees. In practice, we
observe that this step scales almost linearly with increasing num-
ber of processors with an additional, but small, expense of han-
dling greater number of boundary vertices. We observe in our ex-
periments that the total number of boundary vertices including the
duplicate points that are misclassified as critical points is roughly
equal to only 5% of the final size of the join and split trees. There-
fore, the increase in number of sub-domains does not adversely af-
fect the computation time. Note that the domain is not partitioned
for the sequential execution.

Scaling. Figure 5 shows the scaling behavior of DIVCT with re-
spect to increasing number of processors on large data sets. The
graph plots indicate that we achieve close to the ideal speedup
(blue). The exact speedup factors are listed in Table 2. Graph plots
showing the scaling behavior of the key steps, local join / split tree
computation and the stitching step, are included in the supplemen-
tary material. As expected, the local join and split tree computation
for sub-domains scales linearly and very close to the ideal speedup.
This is primarily responsible for the overall near-linear speedup.
On the other hand, the stitching step scales poorly. It is the primary
contributor to the deviation from the ideal linear speedup seen in
Figure 5. For experiments on 64 cores, the time taken for stitching
together with the final merge to compute the contour tree is compa-
rable to the time taken to compute the local join and split trees for
all the sub-domains.

Comparison. We compare the performance of DIVCT with PAR-
ALLELCT in Table 2. We observe significant improvements both
in terms of running time and speedup over PARALLELCT, the
best known parallel implementation for constructing the contour
tree. We observe a saturation in PARALLELCT with increasing
number of processors whereas DIVCT exhibits good scaling. We
also observe significant improvements in terms of memory con-
sumption. For example, PARALLELCT requires approximately
12GB of memory to compute the contour tree for the Vertebra
(512 x 512 x 512) dataset. However, D1vCT requires only one-fifth
as much memory because the data is partitioned into sub-domains.
In the case of larger data sizes, it is infeasible to use PARALLELCT



Model \ #Vertices | LIBTOURTRE | PARALLELCT | DIvCT
Aneurysm | 256 x 256 x 256 15.2 9.4 7.7
Bonsai 256 x 256 x 256 21.9 18.9 16.1
Foot 256 x 256 x 256 31.5 19.8 17.2

Table 1: Time taken (in seconds) to compute the contour tree on a single core. DivCT outperforms both LIBTOURTRE and PARALLELCT.

. PARALLELCT DIVCT

Model #Vertices lcore | 8cores | 64 cores 1 core | 8 cores 64 cores
Vertebra 512 x 512 %512 91.4 19.8 (4.6x) 8.8 (10.4x%) 76.7 12.1 (6.3%x) 2.7 (28.4%)
ColonPhantom 512 x 512 x 442 182.6 | 529 (3.5x) | 154 (11.9%) 156.5 25.2 (6.2x) 5.5(27.5%)
Vertebral024 1024 x 1024 x 1024 - - - 532.5 74.0 (7.2x) 14.3 (37.2%)
ColonPhantom1024 1024 x 1024 x 884 - - - 1142.5 156.4 (7.3x) 32.5(35.2%)
Vertebra2048 2048 x 2048 x 2048 - - - 6513.8 868.5 (7.5 x) 173.7 (37.5x%)
ColonPhantom2048 | 2048 x 2048 x 2048 12890.7 | 2113.2 (6.1x) | 493.9 (26.1 ><)

Table 2: Time taken (in seconds) for computing the contour tree in a multicore system by PARALLELCT and D1vCT. The speedup factor is shown
within parenthesis. DIvVCT exhibits better scaling and is also faster in terms of total running time. PARALLELCT is unable to process larger

datasets because it requires more memory than available.
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Figure 5: Speedup for large datasets with increasing number of
cores. DIVCT exhibits close to ideal scaling behavior. The exact
speedup factors are available in Table 2.

to compute the contour tree. For example, it requires more than
60GB of memory for a 1024 x 1024 x 1024 dataset. DIVCT con-
sumes at most 11GB of memory for the same dataset.

D1vCT may be used to improve the running time of the dis-
tributed contour tree algorithm [21]. In particular, DivCT may be
employed within a single node in a multi-processor environment
and hence supplement the benefits of the distributed algorithm. For
example, the distributed contour tree algorithm requires approxi-
mately 21 seconds to compute the contour tree for the Vertebra
dataset on 64 cores. In contrast, DIVCT requires only 2.7 seconds
on 64 cores to compute the contour tree. However, it is applica-
ble only within a node of the cluster as compared to the distributed
algorithm, which is shown to scale up to 256 processors. So, we
propose the application of DIVCT within a node for computing the
local tree stored at the node followed by the distributed algorithm
across nodes in order to achieve improved performance.

Memory consumption. The maximum memory required by Di-
VCT to construct the trees can be reduced by further subdivid-
ing the sub-domains. In fact, the minimum available memory re-
quired by DIVCT is comparable to the size of the final contour
tree. Assuming that the scalar values are stored in single preci-
sion, DIVCT requires 112 -¢ bytes. The final contour tree can be
computed for the Vertebral024 (1024 x 1024 x 1024) dataset us-

ing 2.5GB of memory on an 8-core machine by partitioning it into
512 sub-domains of size 128 x 128 x 128 each. For datasets even
larger in size, say a 2048 x 2048 x 2048 containing about 8.6 bil-
lion points, we similarly divide the domain into 512 sub-domains
of size 256 x 256 x 256. We compute the final contour tree in less
than 14 minutes consuming roughly 10GB of memory on 8 cores.
With 64 cores, the computation time drops to approximately 3 min-
utes. The number of nodes in the pruned final contour tree is listed
for all datasets in a table in the supplementary material.
Discussion. Contour tree based methods for visualization, analy-
sis, and interactive exploration of data typically compute the con-
tour tree in a preprocessing step. Following this computation, the
methods support fast feature extraction, measurement, comparative
and visual analysis, and interaction often with real-time response. It
is important to ensure that the preprocessing step does not become
a performance bottleneck. For example, given the contour tree, a
level set component can be computed for the Vertebra dataset in ap-
proximately 5 seconds using 64 cores [21]. Topology controlled
transfer function may be automatically designed within 1-2 sec-
onds for data sizes up to 400 x 400 x 400 [41]. Repeating pat-
terns within a scalar field can be computed by identifying similar
subtrees of the contour tree within 1 second for data sizes up to
500 x 500 x 500 [32]. Table 2 shows that DIVCT can compute the
contour tree for the Vertebra dataset within 3 seconds, three times
faster than PARALLELCT. This improvement is significant for all
three application scenarios listed above.

5 CONCLUSIONS

We have presented a simple and memory efficient algorithm for par-
allel construction of the contour tree of a scalar function defined on
a 3D structured grid. We compute the contour tree for extremely
large datasets of size up to 2048 x 2048 x 2048 that do not fit in
memory. The near-linear speedup obtained for various datasets in-
dicates that our implementation scales well with increasing number
of processors. We also report significant improvements in memory
usage over an existing shared memory based parallel algorithm for
computing the contour tree. In future, it would be interesting to
see if we can utilize GPUs or a CPU-GPU hybrid environment for
faster computation of the contour tree.
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