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Abstract

We study the problem of finding a minimum homology basis, that is, a lightest set
of cycles that generates the 1-dimensional homology classes with Z2 coefficients
in a given simplicial complex K. This problem has been extensively studied in the
last few years. For general complexes, the current best deterministic algorithm,
by Dey et al. [13], runs in O(Nmω−1 +nmg) time, where N denotes the total
number of simplices in K, m denotes the number of edges in K, n denotes the
number of vertices in K, g denotes the rank of the 1-homology group of K, and
ω denotes the exponent of matrix multiplication. In this paper, we present three
conceptually simple randomized algorithms that compute a minimum homology
basis of a general simplicial complex K. The first algorithm runs in Õ(mω) time,
the second algorithm runs in O(Nmω−1) time and the third algorithm runs in
Õ(N2g+Nmg2 +mg3) time which is nearly quadratic time when g = O(1).
We also study the problem of finding a minimum cycle basis in an undirected
graph G with n vertices and m edges. The best known algorithm for this problem
runs in O(mω) time. Our algorithm, which has a simpler high-level description,
but is slightly more expensive, runs in Õ(mω) time.
We also provide a practical implementation of computing the minimum homology
basis for general weighted complexes. The implementation is broadly based on
the algorithmic ideas described in this paper, differing in its use of practical
subroutines. Of these subroutines, the more costly step makes use of a parallel
implementation, thus potentially addressing the issue of scale. We compare results
against the currently known state of the art implementation (ShortLoop).

Keywords: Computational topology, Minimum homology basis, Minimum cycle basis,
Matrix computations, Randomized algorithms
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1 Introduction

Minimum cycle bases in graphs have several applications, for instance, in analysis of
electrical networks, analysis of chemical and biological pathways, periodic scheduling,
surface reconstruction and graph drawing. Also, algorithms from diverse application
domains like electrical circuit theory and structural engineering require cycle basis
computation as a preprocessing step. Cycle bases of small size offer a compact descrip-
tion of representatives that is advantageous from a mathematical as well as from an
application viewpoint. For this reason, the problem of computing a minimum cycle
basis has received a lot of attention, both in its general setting as well as in special
classes of graphs such as planar graphs, sparse graphs, dense graphs, network graphs,
and so on. We refer the reader to [21] for a comprehensive survey.

In topological data analysis, “holes” of different dimensions in a geometric dataset
constitute “features” of the data. Algebraic topology offers a rigorous language to
formalize our intuitive picture of holes in these geometric objects. More precisely, a
basis for the first homology group H1 can be taken as a representative of the one-
dimensional holes in the geometric object. The advantages of using minimum homology
bases are twofold: firstly, one can bring geometry in picture by assigning appropriate
weights to edges, and secondly, smaller cycles are easier to understand and analyze,
especially visually. We focus solely on the bases of the first homology group since the
problem of computing a lightest basis for higher homology groups with Z2 coefficients
was shown to be NP-hard by Chen and Freedman [9].

Outline and Contributions

In Section 2, we discuss the necessary preliminaries for cycle basis and homology basis
computation. In Section 3, we describe a simple algorithm for computing a minimum
cycle basis of a weighted graph.

In Section 4, we prove a structural result relating minimum homology bases to
minimum cycle bases. Specifically, we show that every minimum cycle basis of the 1-
skeleton of a complex contains a minimum homology basis. In Section 5, we describe
two randomized algorithms (Algorithms 4 and 5) for computing a minimum homology
basis of a complex. In Section 6, we describe a third randomized algorithm (Algo-
rithm 6) for the same problem that runs in nearly quadratic time when the first Betti
number of the complex is a constant. All three algorithms use state-of-the-art black
box matrix operations, and only the second one (Algorithm 5) uses the structural
result proved in Section 4. Algorithm 4 computes the column rank profile of a matrix
consisting of tight cycles appended to the boundary matrix of the complex, whereas
Algorithm 5 computes the column rank profile of a matrix consisting of a minimum
cycle basis of the 1-skeleton of the complex appended to the boundary matrix of the
complex. Algorithm 6 builds a matrix B containing the minimum homology basis by
iteratively finding a lexicographically smallest cycle from the set of tight cyles that is
linearly independent of the current set of cycles stored in B by using a randomized
binary search.

To demonstrate that the ideas in this work have practical relevance, we provide
an implementation of an algorithm based on Algorithm 5. The implemented algo-
rithm for computing minimum homology basis differs from Algorithm 5 in the use of
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matrix operations for computational efficiency. In particular, unlike Algorithm 5, it
uses matrix reduction algorithm from the PHAT library [4]. The details of the imple-
mentation can be found in Section 8. Finally, in Section 9, we describe experiments on
real-world datasets as well as random complexes. We show that our implementation
FastLoop1 consistently outperforms the state-of-the-art homology basis computation,
ShortLoop [12, 26]).

Finally, we remark that this paper is the full and extended version of the conference
version published in [28].

2 Background and Preliminaries

2.1 Cycle Basis

Let G = (V,E) be a connected graph. Throughout this paper, in context of graphs, we
use n to denote the number of vertices |V | and m to denote the number of edges |E|.
A subgraph of G that has even degree for each vertex is called a cycle of G. A cycle is
called elementary if the set of edges form a connected subgraph in which each vertex
has degree 2. We associate an incidence vector C, indexed on E, to each cycle, so that
Ce = 1 if e is an edge of the cycle, and Ce = 0 otherwise. The set of incidence vectors of
cycles forms a vector space over Z2, called the cycle space of G. It is a well-known fact
that for a connected graph G, the cycle space is of dimension m−n+1. Throughout,
we use ν to denote the dimension of the cycle space of a graph. A basis of the cycle
space, that is, a maximal linearly independent set of cycles is called a cycle basis.

Suppose that the edges of G have non-negative weights. Then, the weight of a cycle
is the sum of the weights of its edges, and the weight of a cycle basis is the sum of the
weights of the basis elements. The problem of computing a cycle basis of minimum
weight (or lightest cycle basis) is called the minimum cycle basis problem. Since we
assume all edge weights to be non-negative, there always exists a minimum cycle basis
of elementary cycles, allowing us to focus on minimum cycle basis comprising entirely
of elementary cycles.

Moreover, we define the length of a cycle to be the number of edges in the cycle,
and the length of a cycle basis to be the sum of lengths of the cycles of the basis
elements.

An elementary cycle C is tight if it contains a lightest path between every pair of
points in C. We denote the set of all tight cycles in the graph by T . Tight cycles are
sometimes also referred to as isometric cycles [2, 21]. Tight cycles play an important
role in designing algorithms for minimum cycle bases, owing to the following theorem
by Horton.
Theorem 1 (Horton [18]). A minimum cycle basisM consists only of tight cycles.

A key structural property about minimum cycle bases was proved by de Pina.
Theorem 2 (de Pina [27]). Cycles C1 . . . , Cν form a minimum cycle basis if there
exists m-dimensional vectors S1, . . . , Sν that satisfy the following three conditions for
all i, 1 ≤ i ≤ ν.

Prefix Orthogonality: ⟨Ck, Si⟩ = 0 for all 1 ≤ k < i.

1https://bitbucket.org/vgl iisc/fastloop/
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Non-Orthogonality: ⟨Ci, Si⟩ = 1.
Shortness: Ci is a minimum weight cycle in T with ⟨Ci, Si⟩ = 1.

The vectors S1, . . . , Sν in Theorem 2 are called support vectors. The recent line
of algorithmic work [2, 20, 22, 24, 27] on the minimum cycle basis problem rely
on Theorem 2. In fact, these algorithms may all be seen as refinements of the algorithm
by de Pina, see Algorithm 1.

Algorithm 1 De Pina’s Algorithm for computing a minimum cycle basis

1: Initialize Si to the i-th unit vector ei for 1 ≤ i ≤ ν
2: for i← 1, . . . , ν do
3: Compute a minimum weight cycle Ci with ⟨Ci, Si⟩ = 1.
4: for j ← i+ 1, . . . , ν do
5: Sj = Sj + ⟨Ci, Sj⟩Si

6: Return {C1, . . . , Cν}.

Algorithm 1 works by inductively maintaining a set of support vectors {Si} so
that the conditions of Theorem 2 are satisfied when the algorithm terminates. In
particular, Lines 4 and 5 of the algorithm ensure that the set of vectors Sj for j > i are
orthogonal to vectors C1, . . . , Ci. Updating the vectors Sj as outlined in Lines 4 and 5
of Algorithm 1 takes time O(m3) time in total. Using a divide and conquer procedure
for maintaining Sj , Kavitha et al. [20] improved the cost of maintaining the support
vectors to O(mω) effectively improving the cost of computing minimum cycle basis
from O(mωn) to O(m2n+mn2 log n), see Algorithm 2.

Algorithm 2 Divide and conquer procedure for fast computation of support vectors
by Kavitha et al. [20]

1: Initialize Si to the i-th unit vector ei for 1 ≤ i ≤ ν.
2: MinCycleBasis(1, ν).

3: procedure MinCycleBasis(ℓ, u)
4: if ℓ = u then
5: Compute a minimum weight cycle Cℓ with ⟨Cℓ, Sℓ⟩ = 1.
6: else
7: q ← ⌊ (ℓ+u)

2 ⌋.
8: MinCycleBasis(ℓ, q).
9: C← [Cℓ, . . . , Cq].

10: W← (CT [Sℓ, . . . , Sq])
−1CT [Sq+1, . . . , Su].

11: [Sq+1, . . . , Su]← [Sq+1, . . . , Su] + [Sℓ, . . . ., Sq]W.
12: MinCycleBasis(q + 1, u).

13: Return {C1, . . . , Cν}.
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Lemma 3 (Lemma 5.6 in [21]). The total number of arithmetic operations performed
in lines 9 to 11 of Algorithm 2 is O(mω). That is, the support vectors satisfying
conditions of Theorem 2 can be maintained in O(mω) time.

Finally, in [2], Amaldi et al. designed an O(mω) time algorithm for computing a
minimum cycle basis by improving the complexity of Line 5 of Algorithm 2 to o(mω)
(from O(m2n) in [20]), while using the O(mω) time divide-and-conquer template for
maintaining the support vectors as presented in Algorithm 2. The o(mω) procedure
for Line 5 is achieved by performing a Monte Carlo binary search on the set of tight
cycles (sorted by weight) to find a minimum weight cycle Ci that satisfies ⟨Ci, Si⟩ = 1.
An efficient binary search is made possible on account of the following key structural
property about tight cycles.
Theorem 4 (Amaldi et al. [2]). The sum of lengths of the tight cycles in a graph is
at most nν.

Amaldi et al. [2] also show that there exists an O(nm) algorithm to compute the
set of all the tight cycles of an undirected graph G. See Sections 2 and 3 of [2] for
details about Amaldi et al.’s algorithm.

2.2 Matrix operations

The column rank profile (respectively row rank profile) of an m × n matrix A with
rank r, is the lexicographically smallest sequence of r indices [i1, i2, . . . , ir] (respec-
tively [j1, j2, . . . , jr]) of linearly independent columns (respectively rows) ofA. Suppose
that {a1, a2, . . . , an} represent the columns of A. Then, following Busaryev et al. [7],
we define the earliest basis of A as the set of columns E(A) = {ai1 , ai2 , . . . , air}.
Throughout, we use nnz(A) to denote the number of nonzero entries in matrix A.

It is well-known that classical Gaussian elimination can be used to compute rank
profile in O(nmr) time. The current state-of-the-art deterministic matrix rank profile
algorithms run in O(mnrω−2) time.
Theorem 5 ([15, 19]). There is a deterministic O(mnrω−2) time algorithm to
compute the column rank profile of an m× n matrix A.

In case of randomized algorithms, Cheung, Kwok and Lau [10] presented a break-
through Monte Carlo algorithm for rank computation that runs in (nnz(A)+rω)1+o(1)

time, where o(1) in the exponent captures some missing multiplicative log n and logm
factors. Equivalently, the complexity for Cheung et al.’s algorithm can also be written
as Õ(nnz(A) + rω). The notation Õ(·) is often used in literature to hide small poly
logarithmic factors in time bounds. While the algorithm by Cheung et al. also com-
putes r linearly independent columns of A, the columns may not correspond to the
column rank profile. However, building upon Cheung et al.’s work, Storjohann and
Yang established the following result.
Theorem 6 (Storjohann and Yang [29, 30, 33]). There exists a Monte Carlo algorithm
for computing row (resp. column) rank profile of a matrix A that runs in Õ(nnz(A)+
rω) time. The failure probability of this algorithm is 1/2.

In Section 6, we use Wiedemann’s algorithms as subroutines to design an output
sensitive algorithm to compute the minimum homology basis of a complex.
Remark 1. Wiedemann [32] presented randomized algorithms to compute the rank of
an m×n matrix A over a finite field and for computing a solution to a sparse system
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of linear equations Ax = b (if one exists). Both algorithms run in Õ(n1(nnz(A)+n1))
time, where n1 = max(m,n) is the maximal dimension of the matrix A.

2.3 Homology

In this work, we restrict our attention to simplicial homology with Z2 coefficients. For
a general introduction to algebraic topology, we refer the reader to [17]. Below we give
a brief description of homology over Z2.

Let K be a connected simplicial complex. We use K(p) to denote the set of p-
dimensional simplices of K, and np the number of p-dimensional simplices of K. Also,
the p-dimensional skeleton of K is denoted by Kp. In particular, the 1-skeleton of K
(which is an undirected graph) is denoted by K1. Throughout this paper, in context of
simplicial complexes, we use n to denote |K(0)|, m to denote |K(1)|, and N to denote
|K|.

We consider formal sums of simplices with Z2 coefficients, that is, sums of the
form

∑
σ∈K(p) aσσ, where each aσ ∈ {0, 1}. The expression

∑
σ∈K(p) aσσ is called

a p-chain. Since chains can be added to each other, they form an abelian group,
denoted by Cp(K). Since we consider formal sums with coefficients coming from Z2,
which is a field, Cp(K), in this case, is a vector space of dimension np over Z2. The
p-simplices in K give rise to the standard basis for Cp(K). This establishes a one-to-
one correspondence between elements of Cp(K) and subsets of K(p). Thus, associated
with each chain is an incidence vector v, indexed on K(p), where vσ = 1 if σ is a
simplex of v, and vσ = 0 otherwise. The boundary of a p-simplex is a (p−1)-chain that
corresponds to the set of its (p− 1)-faces. This map can be linearly extended from p-
simplices to p-chains, where the boundary of a chain is the Z2-sum of the boundaries
of its elements. Such an extension is known as the boundary homomorphism, and
denoted by ∂p : Cp(K)→ Cp−1(K). A chain ζ ∈ Cp(K) is called a p-cycle if ∂pζ = 0,
that is, ζ ∈ ker ∂p. The group of p-dimensional cycles is denoted by Zp(K). As before,
since we are working with Z2 coefficients, Zp(K) is a vector space over Z2. A chain
η ∈ Cp(K) is said to be a p-boundary if η = ∂p+1c for some chain c ∈ Cp+1(K), that
is, η ∈ im ∂p+1. All p-boundaries are also p-cycles and sometimes referred to as trivial
cycles. The p-cycles that are not p-boundaries are referred to as nontrivial cycles. The
group of p-boundaries is denoted by Bp(K). In our case, Bp(K) is also a vector space,
and in fact a subspace of Zp(K).

Thus, we can consider the quotient space Hp(K) = Zp(K)/Bp(K). The elements
of the vector space Hp(K), known as the p-th homology group of K, are equivalence
classes of p-cycles, where p-cycles are equivalent if their Z2-difference is a p-boundary.
Equivalent cycles are said to be homologous. For a p-cycle ζ, its corresponding homol-
ogy class is denoted by [ζ]. Bases of Bp(K), Zp(K) and Hp(K) are called boundary
bases, cycle bases, and homology bases respectively. The dimension of the p-th homol-
ogy group of K is called the p-th Betti number of K, denoted by βp(K). We are
primarily interested in the first Betti number β1(K). For notational convenience, let
g = β1(K), and denote the dimension of B1(K) by b.

Using the standard bases for Cp(K) and Cp−1(K), the matrix [∂pσ1 ∂pσ2 · · ·∂pσnp
]

whose column vectors are boundaries of p-simplices is called the p-th boundary matrix.
Abusing notation, we denote the p-th boundary matrix by ∂p. For the rest of the
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Fig. 1 Consider complexes K and L in the figure above with unit weights on the edges.
Since K has no 2-simplices, its 1-skeleton K1 is identical to K itself. The set of cycles C =
{{1, 2, 5}, {1, 4, 8}, {3, 4, 7}, {2, 3, 6}, {1, 2, 3, 4}} constitutes a minimum cycle basis for the respective
1-skeletons K1 and L1 (viewed as graphs). The set C also constitutes a minimum homology basis for
K. The set C′ = {{1, 2, 3, 4}, {3, 4, 7}} constitutes a minimum homology basis for L.

paper, we use n,m and N to denote the number of vertices, edges and simplices in
the complex respectively.

This paper focuses on 1-dimensional cycles. A set of 1-cycles {ζ1, . . . , ζg} is called
a homology cycle basis if the set of classes {[ζ1], . . . , [ζg]} forms a homology basis.
For brevity, we abuse notation by using the term “homology basis” for {ζ1, . . . , ζg}.
Assigning non-negative weights to the edges of K, the weight of a cycle is the sum of
the weights of its edges, and the weight of a homology basis is the sum of the weights
of the basis elements. The problem of computing a minimum weight basis of H1(K)
(that is, a lightest basis of H1(K)) is called the minimum homology basis problem.
Note that, when the input simplicial complex is a graph, the notions of homology basis
and cycle basis coincide. Please refer to Figure 1 for an example.

Moreover, we define the length of a 1-cycle to be the number of edges in the 1-
cycle, and the length of a homology basis to be the sum of lengths of the 1-cycles of
the basis elements.

For the special case when the input complex is a surface, Erickson and Whittle-
sey [16] gave a O(n2 log n+ gn2 + g3n)-time algorithm. Recently, Borradaile et al. [6]
gave an improved deterministic algorithm that runs in O(g3n log n+m) assuming the
lightest paths are unique. For small values of g, the algorithm in [6] runs in nearly
linear time.

Furthermore, Dey et al. [12] and Chen and Freedman [8] generalized the results
by Erickson and Whittlesey [16] to arbitrary complexes. Subsequently, introducing
the technique of annotations, Busaryev et al. [7] improved the complexity to O(Nω +
N2gω−1). More recently, Dey et al. [13] designed an O(Nω +N2g) time algorithm by
adapting the divide and conquer algorithm for computing a minimum cycle basis of
Kavitha et al. [20] for the purpose of computing a minimum homology basis. Dey et
al. also designed a randomized 2-approximation algorithm for the same problem that
runs in O(Nω

√
N logN) expected time. It is possible to etablish a tighter bound for

the algorithm by Dey et al. [13] (See Section 7).
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2.4 Matroids

A matroid M consists of a pair (S,I ), where S is a finite ground set and I is a
family of subsets of S satisfying the following axioms:
1. ∅ ∈ I ;
2. if I ∈ I and J ⊆ I, then J ∈ I ; and
3. if I,K ∈ I and |I| < |K|, then there is an element e ∈ K \ I such that I

⋃
{e} ∈

I .
If a set I ⊂ S belongs to I , then it is called an independent set ; otherwise it is called
a dependent set. A circuit in a matroid M is a minimal dependent subset of S. All
proper subsets of circuits are independent sets. A maximal independent set is called
a basis of the matroid.

Matroids admit a very useful property that goes by the name of basis exchange
property : If A and B are distinct bases of a matroid and a ∈ A \ B, then there
exists an element b ∈ B \ A such that A(\ {a})

⋃
{b} is again a basis. A weighted

matroid is a matroid M equipped with a weight function w : S → R+ that additively
extends to all subsets of S. From an algorithmic standpoint, the most important
property of weighted matroids is that there is a greedy algorithm for these matroids
that computes the maximum (minimum) weight basis. It can be easily checked that
B is a minimum weight basis of a matroid if and only if none of the elements of B
can be exchanged for a lighter element while still preserving linear independence. As
an immediate consequence, if the elements in two distinct minimum bases are sorted
by weight, then the ordered sets of sorted weights coincide.

Let the cycle space of G be the ground set Ω, and let I be defined as follows.

I = {I | I is a linearly independent set of cycles of G}
Then, the pair M = (Ω,I ) forms a matroid. When combined with a weight

function on edges, it becomes a weighted matroid. Cycle bases of G correspond to the
bases of M .

Analogously, let the nontrivial 1-cycles of a 2-complex K be the ground set Ω′, and
let I ′ be defined as follows.

I ′ = {I | I is a linearly independent set of nontrivial cycles of K}
Then, the pair M ′ = (Ω′,I ′) together with a weight function on the edges forms

a weighted matroid. Sets of cycles whose classes form 1-homology bases of K are the
bases of matroid M ′.

Key to our algorithms is the property that the cycles in a cycle (homology) basis
can be exchanged with other cycles while preserving independence.
Remark 2. For any subset Ω1 of the ground set Ω (resp. any subset Ω′

1 of the ground
set Ω′) with the property that Ω1 (resp. Ω′

1) contains a minimum weight basis, the
column rank profile of a matrix whose columns consist of cycles from Ω1 (resp. cycles
from Ω′

1) is the greedy algorithm that returns a minimum weight basis.
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3 An algorithm for computing a minimum cycle
basis

Given a graph G = (V,E), let {C1, . . . , C|T |} be the list of tight cycles in G sorted
by weight, and let T(G) = [C1 C2 . . . C|T |] be the matrix formed with cycles Ci as its
columns. Using Theorem 4, since the total length of tight cycles is at most nν, and
since each tight cycle consists of at least three edges, we have that |T | ≤ nν

3 . Also, the
rank of T(G) is ν and T(G) is a sparse matrix with nnz(T(G)) bounded by nν. This
sparsity is implicitly used in the design of the Monte Carlo binary search algorithm for
computing a minimum cycle basis, as described in [2]. We now present a simple and
fast algorithm for minimum cycle basis that exploits the sparsity and the low rank of
T(G) more directly.

Algorithm 3 Algorithm for minimum cycle basis

1: Compute the sorted list of tight cycles in G, and assemble the matrix T(G).
2: Compute the column rank profile [i1, i2, . . . , iν ] of T(G) using Storjohann and

Yang’s algorithm described in [30].
3: Return E(T(G)).

Theorem 7. There is a Monte Carlo algorithm that computes the minimum cycle
basis in Õ(mω) time, with failure probability at most 1/2.

Proof. The correctness of the algorithm follows immediately from Theorem 1. As noted
in Section 2.4, the cycles of a graph form a weighted matroid. Since the cycles in T(G)
are sorted by weight, and since the tight cycles of a graph are guaranteed to contain
a minimum cycle basis, from Remark 2 the column rank profile of T(G) is the greedy
algorithm, and the earliest basis E(T(G)) is a minimum cycle basis.

The list of tight cycles in G can be computed in O(nm) time using the algorithm
described in Section 2 of [2]. Hence, Step 1 of Algorithm 3 takes O(nm log(nm))
time (which in turn is same as O(nm log n) time). Moreover, using Theorem 6, the
complexity of Step 2 is bounded by Õ(nν + νω). Since n, ν < m, the complexity of
Algorithm 3 is bounded by Õ(mω). Using Theorem 6, the failure probability of the
algorithm is at most 1/2.

4 Minimum homology basis, minimum cycle basis
and tight cycles

To begin with, note that since every graph is a 1-dimensional simplicial complex, the
minimum cycle basis problem is a restriction of the minimum homology basis problem
to instances (simplicial complexes) that have no 2-simplices. In this section, we refine
this observation by deriving a closer relation between the two problems.

We will now define some notation that we will use in Lemma 8 and Theorem 9.
Notation 1. We assume that we are provided a complex K in which all edges are
assigned non-negative weights. Let w : E → R+ be a non-negative weight function
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on the edges of a complex K, and let B = {η1, . . . , ηb} be a basis for the boundary
vector space B1(K) indexed so that w(ηi) ≤ w(ηi+1), 1 ≤ i < b (with ties broken
arbitrarily). Also, let H = {ζ1, . . . , ζg} be a minimum homology basis of K indexed
so that w(ζi) ≤ w(ζi+1), 1 ≤ i < g (with ties broken arbitrarily). Then, the set
C = {η1, . . . , ηb, ζ1, . . . , ζg} is a cycle basis for K1. Let M be a minimum cycle basis
of K1. Every element C ∈ M is homologous to a cycle

∑g
i=1 aiζi where ai ∈ {0, 1}

for each i. Then, for some fixed integers p and q, M = {B1, . . . , Bq, C1, . . . , Cp} is
indexed so that the elements B1, . . . , Bq are trivial and the elements C1, . . . , Cp are
nontrivial cycles. Also, we have w(Bj) ≤ w(Bj+1) for 1 ≤ j < q (with ties broken
arbitrarily), and w(Cj) ≤ w(Cj+1) for 1 ≤ j < p (with ties broken arbitrarily).
Remark 3. We note that p ≥ g. This is because a trivial cycle can be obtained as
a linear combination of nontrivial cycles, but a nontrivial cycle cannot be obtained
as a linear combination of trivial cycles. Thus, there have to be at least g linearly
nontrivial cycles inM to be able to obtain all cycles in any homology basis from linear
combinations of cycles inM.
Lemma 8. Given a simplicial complex K, suppose that H, C and M are defined as
in Notation 1. The following two statements are true
1. w(ζ1) = w(C1), and
2. there exists a minimum homology basis H with ζ1 homologous to C1.

Proof. Targeting a contradiction, suppose there exists a minimum homology basis
with w(ζ1) < w(C1). Let ζ1 =

∑p
i=1 aiCi +

∑q
j=1 bjBj , where ai ∈ {0, 1} for each

i and bj ∈ {0, 1} for each j. Since ζ1 is a nontrivial cycle, there exists at least
one i with ai = 1. Let ℓ ∈ [1, p] be the largest index in the above equation with

aℓ = 1. Rewriting the equation, we obtain Cℓ =
∑ℓ−1

i=1 aiCi +
∑q

j=1 bjBj + ζ1. Since
w(ζ1) < w(C1) by assumption, we have w(ζ1) < w(Cℓ) because w(Cℓ) ≥ w(C1)
by indexing of M. It follows that the basis obtained by exchanging Cℓ for ζ1, that
is, {B1, . . . , Bq, ζ1, C1, . . . , Cℓ−1, Cℓ+1, . . . , Cp} gives a smaller cycle basis than the
minimum one, a contradiction.

Once again, targeting a contradiction, suppose there exists a minimum homology
basis with w(ζ1) > w(C1). Let C1 =

∑g
i=1 aiζi+

∑b
j=1 bjηj . As before, since C1 is not

trivial, there exists at least one i with ai = 1. Let ℓ ∈ [1, g] be the largest index in

the above equation with aℓ = 1. Then, ζℓ =
∑ℓ−1

i=1 aiζi +
∑b

j=1 bjηj + C1. Note that
w(ζℓ) ≥ w(ζ1) because of the indexing, and w(ζ1) > w(C1) by assumption. Therefore,
the set {C1, ζ1, . . . , ζℓ−1, ζℓ+1, . . . , ζp} obtained by exchanging ζℓ for C1 gives a smaller
homology basis than the minimum one, a contradiction. This proves the first part of
the lemma.

From the first part of the lemma, we have w(ζ1) = w(C1) for every mini-
mum homology basis. Let H be an arbitrary minimum homology basis. Then, if
C1 is not homologous to ζ1 ∈ H, by using basis exchange we can obtain H =
{C1, ζ1, . . . , ζℓ−1, ζℓ+1, . . . , ζp}, which is the minimum homology basis with its first
element homologous to C1, and having the same weight as w(C1), proving the
claim.
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We now prove a theorem which allows us to harness fast algorithms for mini-
mum cycle basis in service of improving time complexity of algorithms for minimum
homology basis.
Theorem 9. Given a simplicial complex K, suppose that H, C and M are defined
as in Notation 1. Then, there exists a minimum homology basis H of K, and a set
{Ci1 , . . . , Cig} ⊂ {C1, . . . , Cp} ⊂ M such that, for every k ∈ [1, g], we have Cik

homologous to a cycle spanned by ζ1, . . . , ζk, and w(Cik) = w(ζk). Moreover, i1 = 1,
and ik for k > 1 is the smallest index for which Cik is not homologous to any cycle
spanned by {Ci1 , . . . , Cik−1

}. In particular, the set {Ci1 , . . . , Cig} ⊂ M constitutes a
minimum homology basis of K.

Proof. The key argument is essentially the same as for the proof of Theorem 8.
Nonetheless, we present it here for the sake of completeness. We shall prove the claim
by induction. Theorem 8 covers the base case. By induction hypothesis, there is an
integer k < g, and a minimum homology basis H = {ζ1, . . . , ζg}, for which, vectors
{Ci1 , . . . , Cik} ⊆ {C1, . . . , Cp} are such that, for every j ∈ [1, k], we have Cij homol-
ogous to a cycle spanned by ζ1, . . . , ζj , and w(Cij ) = w(ζj). Let ik+1 be the smallest
index for which Cik+1

∈ {C1, . . . , Cp} is not homologous to any cycle spanned by
{Ci1 , . . . , Cik}. Such an index ik+1 ≤ p exists assuming every nontrivial cycle in C can
be obtained as a linear combination of cycles inM.

Suppose that w(ζk+1) < w(Cik+1
). Let ζk+1 =

∑p
i=1 aiCi +

∑q
j=1 bjBj . Let ℓ ∈

[1, p] be the largest index in the above equation with aℓ = 1. Then, Cℓ =
∑ℓ−1

i=1 aiCi+∑q
j=1 bjBj + ζk+1. From the induction hypothesis, we can infer that ℓ ≥ ik+1, and

hence w(Cℓ) ≥ w(Cik+1
) by indexing of M. Thus, if w(ζk+1) < w(Cik+1

), then we
have w(ζk+1) < w(Cℓ). It follows that, {B1, . . . , Bq, ζk+1, C1, . . . , Cℓ−1, Cℓ+1, . . . , Cp}
obtained by exchanging Cℓ for ζk+1 gives a smaller cycle basis than the minimum one,
contradicting the minimality of H.

Now, suppose that w(ζk+1) > w(Cik+1
). Let Cik+1

=
∑g

i=1 aiζi +
∑b

j=1 bjηj . Let
ℓ ∈ [1, g] be the largest index in the above equation with aℓ = 1. Rewriting the

equation, we obtain ζℓ =
∑ℓ−1

i=1 aiζi +
∑b

j=1 bjηj + Cik+1
. Again, using the induction

hypothesis, ℓ ≥ k + 1, and hence, w(ζℓ) ≥ w(ζk+1) because of the indexing. Since we
have assumed w(ζk+1) > w(Cik+1

), this gives us w(ζℓ) > w(Cik+1
). Hence, the set

{Cik+1
, ζ1, . . . , ζℓ−1, ζℓ+1, . . . , ζp} obtained by exchanging ζℓ for Cik+1

gives a smaller
homology basis than the minimum one, contradicting the minimality of H.

From the first part of the proof, we have established that w(Cik+1
) = w(ζk+1).

So, if Cik+1
is not homologous to ζk+1 ∈ H and w(ζk+1) = w(Cik+1

), then H =
{Cik+1

, ζ1, . . . , ζℓ−1, ζℓ+1, . . . , ζp} obtained by exchanging ζℓ for Cik+1
is the desired

minimum homology basis, proving the induction claim.

Previously, it was known from Erickson and Whittlesey [16] that H is contained
in T .
Theorem 10 (Erickson and Whittlesey [16]). With non-negative weights, every cycle
in a lightest basis of H1(K) is tight. That is, if H is any minimum homology basis of
K, then H ⊂ T .

Using Theorems 1 and 9, we can refine the above observation.
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Corollary 11. Let T denote the set of tight cycles of K1, and let M be a minimum
cycle basis of K1. Then, there exists a minimum homology basis H of K such that
H ⊂M ⊂ T .

5 Algorithms for minimum homology basis

To begin with, note that since Cp(K),Zp(K),Bp(K) and Hp(K) are vector spaces, the
problem of computing a minimum homology basis can be couched in terms of matrix
operations.

Given a complex K, let {C1, . . . , C|T |} be the list of tight cycles in K1 sorted
by weight, and let T = [C1 C2 . . . C|T |] be the matrix formed with cycles Ci as its
columns. Then, the matrix Y = [∂2 | T] has O(N +nν) columns and O(N +nν) non-
zero entries since T has O(nν) columns and O(nν) non-zero entries by Theorem 4,
and ∂2 has O(N) columns and O(N) non-zero entries. Since Y has m rows, the rank of
Y is bounded by m. This immediately suggests an algorithm for computing minimum
homology basis analogous to Algorithm 3.

Algorithm 4 Algorithm for minimum homology basis

1: Compute the sorted list of tight cycles in T, and assemble matrix Y.
2: Compute the column rank profile [j1, j2, . . . , jb, i1, i2, . . . , ig] of Y using Storjo-

hann and Yang’s algorithm [30], where columns {Yjk} and {Yiℓ} are linearly
independent columns of ∂2 and T respectively.

3: Return Columns {Yi1 ,Yi2 , . . . ,Yig}.

Theorem 12. Algorithm 4 is a Monte Carlo algorithm for computing a minimum
homology basis that runs in Õ(mω) time with failure probability at most 1

2 .

Proof. The correctness of the algorithm is an immediate consequence of Corollary 11.
As noted in Section 2.4, the nontrivial cycles of a complex form a weighted matroid.
Since the cycles in T are sorted by weight, and since the tight cycles of the 1-skeleton
of the complex is guaranteed to contain a minimum homology basis, from Remark 2,
the column rank profile of T is the greedy algorithm that returns a minimum homology
basis.

The list of tight cycles in G can be computed in O(nm) time using the algorithm
described in Section 2 of [2]. Hence, Step 1 of Algorithm 4 takes O(nm log n) time.
Moreover, using Theorem 6, the complexity of Step 2 is bounded by Õ(N +nν+mω),
which is the same as Õ(mω) since N and nν are both in Õ(mω), and the failure
probability is at most 1/2.

When the number of 2-simplices in complex K is significantly smaller than the
number of edges, the complexity for minimum homology can be slightly improved by
decoupling the minimum homology basis computation from the minimum cycle basis
computation, as illustrated in Algorithm 5.
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Algorithm 5 Algorithm for minimum homology basis

1: Compute a minimum cycle basis M of K1 using the Monte Carlo algorithm by
Amaldi et al. [2]. Let M be the matrix whose columns are cycle vectors in M
sorted by weight.

2: Assemble the matrix Z = [∂2 | M].
3: Compute the column rank profile [j1, j2, . . . , jb, i1, i2, . . . , ig] of Z using the deter-

ministic algorithm by Jeannerod et al. [19], where columns {Zjk} and {Ziℓ} are
linearly independent columns of ∂2 and M respectively.

4: Return Columns {Zi1 ,Zi2 , . . . ,Zig}.

Theorem 13. A minimum homology basis can be computed in O(Nmω−1) time
using the Monte Carlo algorithm described in Algorithm 5. The algorithm fails with
probability at most ν log(nm) 2−k, where k = m0.1.

Proof. As in Theorem 12, the correctness of the algorithm is an immediate conse-
quence of Corollary 11 and Remark 2. The algorithm fails only when Step 1 returns an
incorrect answer, the probability of which is as low as ν log(nm) 2−k, where k = m0.1,
see Theorem 3.2 of [2].

The minimum cycle basis algorithm by Amaldi et al. [2] runs in O(mω) time
(assuming the current exponent of matrix multiplication ω > 2). Furthermore, using
Theorem 5, the complexity of Line 3 is bounded by O(Nmω−1). So, the overall
complexity of the algorithm is O(mω +Nmω−1) = O(Nmω−1).

Note that in Line 3 of Algorithm 5, it is possible to replace the deterministic
algorithm by Jeannerod et al. [19] with the Monte Carlo algorithm by Storjohann and
Yang’s algorithm [30]. In that case, the complexity of the algorithm will once again
be Õ(mω), and the failure probability will be at most 1− 1

2 (1− ν log(nm)2−k).

6 A g-sensitive algorithm for minimum homology
basis

In this section, we describe a randomized g-sensitive algorithm for computing minimum
homology basis whose complexity depends on the value of g. Specifically, when g =
O(1), Algorithm 6 computes the minimum homology basis of a complex correctly in
nearly quadratic time. To begin with, note that using Corollary 11, we know that the
tight cycles of the 1-skeleton K1 of a complex K contains a minimum homology basis
of K. In this algorithm, the tight cycles of K1 are maintained in a matrix denoted by
T. Specifically, the tight cycles are maintained in the columns of T and are sorted by
weight. Essentially, Algorithm 6 builds a matrix B containing the minimum homology
basis by iteratively finding a lexicographically smallest cycle in T that is linearly
independent of the current set of cycles stored in B. It uses binary search each time to
locate the lexicographically smallest linearly independent cycle. To make the search
procedure efficient, randomization is used. Wiedemann’s black box algorithms are used
twice in Algorithm 6, first, in Line 2 to estimate g, and then in Line 13 to check if
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a randomly selected cycle w is linearly independent of the basis cycles assembled in
matrix B.

Throughout this section, for some indices i, j, T[i] represents the i-th column of T,
and T[i . . . j] represents the submatrix of T formed by choosing columns i through j.

Recall that there are g cycles in any homology basis. In Algorithm 6, the outer
for loop in Lines 6-30 runs g′ times, finding one linearly independent cycle in each
iteration. Here, g′ = g with high probability since Wiedemann’s algorithm computes
the rank of a matrix correctly with high probability. The while loop in Algorithm 6
uses a modification of binary search to find the lexicographically smallest cycles that
are linearly independent of cycles in the matrix B. Suppose that we have some proba-
bilistic guarantee that the first k cycles in the minimum homology basis are correctly
computed. Now, if T[ℓ . . . p] has a cycle that is linearly independent of the cycles in
B, then in the probability amplification for loop of Lines 10-17 such a cycle is identi-
fied correctly with probability at least

(
1− 1

m2

)
(See Lemma 15). On the other hand,

if T[ℓ . . . p] does not have a cycle that is linearly independent of the cycles in B, then
in the if condition of Line 14, a cycle that is linearly dependent on cycles in B is
misidentified as linearly independent with probability at most 1

m2 (See Lemma 16).
If a linearly independent cycle is successfully identified in T[ℓ . . . p], then the search
interval is halved by setting r ←

⌊
ℓ+r
2

⌋
(See Line 15). On the other hand, if the algo-

rithm fails to find a linearly independent cycle in T[ℓ . . . p], then in the next iteration
of the while loop, the search interval is halved by setting ℓ←

⌊
ℓ+r
2

⌋
+1 (See Line 23).

If we have narrowed down the search of the next cycle in the basis to T[ℓ] and
ℓ = r but T[ℓ] is linearly dependent on cycles in B, then the algorithm has clearly
failed and is therefore terminated (See the if condition in Line 19). On the other hand,
if we have narrowed down the search of the next cycle in the basis to T[ℓ] and ℓ = r
where T[ℓ] is linearly independent of cycles in B, then we add T[ℓ] to B and initiate
the search for the next cycle in the basis (See the if condition in Line 25).
Notation 2. Given an m × n matrix A and a n-dimensional column vector x, the
matrix vector product A · x to be equal to the vector

∑n
i=1 Aixi.

Lemma 14. If there exists a column vector in T[ℓ . . . p] that is linearly independent of
column vectors of [B | ∂2], then the probability that the vector w chosen in Line 12 is
such that the system of equations [B | ∂2] · x = w in Line 13 does not have a solution
is at least 1

2 .

Proof. We begin with noting that w is set to T[ℓ . . . p] · v in Line 12.
We will prove the claim in the lemma by induction. Let i1 be the smallest index for

which the column T[i1] is not in the column space of [B | ∂2]. Then, setting v[i1] to 1
and v[j] to either 0 or 1 for j ∈ {ℓ, . . . , i1 − 1}, we obtain a set of linear combinations
of columns in T[ℓ . . . i1], denoted by Si1 , which do not lie in the column space of
[B | ∂2]. Since |Si1 | = 2i1−ℓ, half of the linear combinations of the first i1 − ℓ columns
of T generate a column that does not belong to the column space of [B | ∂2]. This
completes the base case of the induction.

For the inductive hypothesis, assume that for some i > i1, at least half of the
2i−ℓ+1 linear combinations of columns of T[ℓ . . . i] using the first i − ℓ + 1 indices
generate a column that is not in the column space of [B | ∂2]. Denote this set of linear
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Algorithm 6 Algorithm for minimum homology basis

1: Compute the set of tight cycles of K1 in matrix T sorted by weight.
2: Use Wiedemann’s algorithm to compute rk(∂1). Let z1 = m − rk(∂1). Next, use

Wiedemann’s algorithm to compute b1 = rk(∂2). Then, g
′ ← z1 − b1.

3: ▷ Wiedemann’s algorithm computes rank correctly with high probability. Hence,
g′ = g with high probability.

4: Initialize B with the empty matrix.
5: ℓ← 1; r ← m− n+ 1;
6: for i = 1 to g′ do ▷ Outer for loop
7: k ← 0; ▷ The variable k is not used in the algorithm; but is used in the analysis.
8: while ℓ ≤ r do ▷ The while loop is used for binary search.
9: p←

⌊
ℓ+r
2

⌋
; found← false;

10: for 2 logm times do ▷ Probability amplification for loop
11: Let v be a uniformly random 0-1 vector of size (p− ℓ+ 1)
12: w← T[ℓ . . . p] · v
13: Use 2 logm independent runs of Wiedemann’s algorithm to

determine whether [B | ∂2] · x = w has a solution
14: if a solution to [B | ∂2] · x = w is not found in any of the runs then
15: r ← p; found← true

16: foundIndex← p
17: Exit the for loop in Lines 10–17

18: if found = false then
19: if ℓ = r then
20: Print “Algorithm failed.” ▷ Binary search fails. Cycle not found.
21: return;
22: else
23: ℓ← p+ 1

24: else ▷ Binary search successful. Linearly independent cycle found.
25: if ℓ = r then
26: ℓ← foundIndex + 1
27: r ← m− n+ 1
28: B← [B | w]
29: Exit the while loop

30: k ← k + 1

combinations by Si. Denote the complementary set of linear combinations by Si. Said
differently, |Si| ≥ 2i−ℓ and |Si ∪ Si| = 2i−ℓ+1.

Then, we have two cases: either T[i+ 1] is in the column space of [B | ∂2] or not.
(1.) If it is in the column space of [B | ∂2], then Si+1 is obtained by extending the

combinations in Si by setting v[i+ 1] to be either 0 or 1.
(2.) If it is not in the column space of [B | ∂2], then the combinations in Si+1 that

generate a column that is not in the column space of [B | ∂2] are obtained by
(a.) extending combinations in Si by setting v[i + 1] = 1, (b.) extending all
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combinations in Si by setting v[i+1] = 0, and some combinations in Si by setting
v[i+ 1] = 1 (if linear independence is preserved).

For every combination in Si+1, the vector v[ℓ . . . i+1] picks a column fromT that is not
in the column space of [B | ∂2]. Note that in both cases (1.) and (2.), |Si+1| ≥ 2i−ℓ+1

assuming |Si| ≥ 2i−ℓ. The claim follows by noting that v is selected uniformly at
random.

Lemma 15. If there exists a column vector in T[ℓ . . . p] that is linearly independent
of column vectors of [B | ∂2], then the if condition in Line 14 fails to satisfy in each
of the 2 logm iterations of the probability amplification for loop (of Lines 10-17) with
probability at most 1

m2 .

Proof. By Lemma 14, the failure probability of one iteration of the probability ampli-
fication for loop is at most 1

2 . Since the for loop of Lines 10-17 is executed 2 logm
times, and each time the vector w is chosen independently, the if condition fails to
satisfy with probability at most 2−2 logm = 1

m2 .

Lemma 16. If there does not exist a column vector in T[ℓ . . . p] that is linearly inde-
pendent of column vectors of [B | ∂2], then the if condition in Line 14 is satisfied with
probability at most 1

m2 .

Proof. By assumption, there does not exist a column vector in T[ℓ . . . p] that is linearly
independent of column vectors of [B | ∂2]. Suppose that in one of the iteration of the
probability amplification for loop (of Lines 10-17) all 2 logm runs of the Wiedemann’s
algorithm fail to find a solution to [B | ∂2] · x = w. The failure probability of one run
of Wiedemann’s algorithm (Line 13) is at most 1

2 . Hence, the probability that 2 logm
runs fail to find a solution even when one exists is at most 2−2 logm = 1

m2 .

Let ζ1 be the lexicographically smallest nontrivial cycle in T, and for every i ∈
{2, . . . , g} let ζi be the lexicographically smallest cycle inT that is linearly independent
of cycles ζj for j ∈ [i− 1]. Let Ei be the event that B[i] = ζi. Also, let E0 be the event
that g′ = g.
Lemma 17. Pr[E1 | E0] ≥ (1− 1

m2 )
⌈log ν⌉.

Proof. For i = 1, in the outer for loop of Lines 6-30, we denote the values of ℓ, p
and r in the k-th iteration of the while loop by ℓk, pk and rk, respectively. Note that
ℓ0 = 1 and r0 = m − n + 1. For k ∈ {2, . . . , ⌈log ν⌉}, when i = 1 and k > 1, if the
if condition in Line 14 is successful, then ℓk = ℓk−1 and rk = pk−1 (see Line 15),
else ℓk = pk−1 + 1 (see Line 23) and rk = rk−1. The algorithm uses a modification
of binary search to find the lexicographically smallest indexed column of T that does
not lie in the column space of [B | ∂2] (which is the same as [∂2] when i = 1).

Assuming E0 is satisfied, we have g = g′ ≥ 1. Clearly, ζ1 ∈ T[ℓ0, r0]. Suppose that
after k−1 iterations, the probability that ζ1 ∈ T[ℓk−1, rk−1] is at least (1− 1

m2 )
k−1. If

ζ1 ∈ T[ℓk−1, pk−1], then using Lemma 15, rk = pk−1 and ℓk = ℓk−1 with probability
at least 1 − 1

m2 . On the other hand, if ζ1 ∈ T[pk−1 + 1, rk−1], then using Lemma 16,
ℓk = pk−1 + 1 and rk = rk−1 with probability at least 1 − 1

m2 . In either case, the
probability that ζ1 ∈ T[ℓk, rk] is at least (1− 1

m2 )
k.
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In every iteration of the while loop, the size of the search interval reduces by half.
Since the total number of columns in T is ν, Pr[E1 | E0] is at least (1− 1

m2 )
⌈log ν⌉.

Lemma 18. Pr[Ei | ∩i−1
j=0Ej ] ≥ (1− 1

m2 )
⌈log ν⌉.

Proof. The proof is nearly identical to Lemma 17.

We now recall a useful inequality from Motwani and Raghavan’s book [25].
Proposition 19 (Proposition B.3 [25]). For all t, n ∈ R such that n ≥ 1 and t ≤ n,

et
(
1− t2

n

)
≤

(
1 +

t

n

)n

.

Theorem 20. Algorithm 6 correctly computes the minimum homology basis with
probability at least 1

4e
−1

(
1− 1

m2

)
.

Proof. To begin with, note that Wiedemann’s algorithm [32] for computing the rank
of a matrix has success probability at least 1

2 . Hence, Pr[E0] ≥ 1
4 .

Using Pr[∩g
′

i=0Ei] = Pr[E0]×Pr[E1 | E0]×Pr[E2 | E1 ∩E0]× · · · ×Pr[Eg′ | ∩g
′−1

j=0 Ej ]
and Lemmas 17 and 18, we deduce that

Pr[∩g
′

i=0Ei] ≥
1

4

(
1− 1

m2

)⌈log ν⌉g′

.

From Proposition 19,

e−1

(
1− 1

m2

)
≤

(
1 +

(−1)
m2

)m2

≤
(
1− 1

m2

)⌈log ν⌉g′

Hence, the probability that Algorithm 6 correctly computes the minimum homol-
ogy basis is given by 1

4 · e
−1

(
1− 1

m2

)
.

Theorem 21. Algorithm 6 runs in Õ(N2g +Nmg2 +mg3) time.

Proof. The list of tight cycles inG can be computed in O(nm) time using the algorithm
described in Section 2 of [2]. Hence, Line 1 of Algorithm 6 takes O(nm log(nm)) =
O(nm log n) time.

Since ∂1 and ∂2 have O(N) nonzero entries, rank computations, from Remark 1,
using Wiedemann’s algorithm [32] in Line 2 take Õ(N2) time.

We note that if g′ > g, then in the outer for loop of Lines 6-30, for i = g + 1,
the binary search will fail and the if condition in Line 19 will be satisfied, and the
algorithm will terminate. Therefore, we can state the complexity analysis in terms of
g instead of g′.

By Theorem 4, the total length of tight cycles of K1 is at most nν = O(nm). Using
a sparse matrix representation of M, Line 12 takes O(nm) time. From Remark 1, we
know that a single run of Wiedemann’s algorithm takes Õ((N + mg) · (N + g)) =
Õ(N2+Nmg+mg2) time sinceNg = O(N2). So, logm runs of Wiedemann’s algorithm
in Line 13 takes Õ((N2 + Nmg + mg2)2 logm) = Õ(N2 + Nmg + mg2) time. The
outer for loop in Lines 6-30 runs at most g + 1 times. The while loop in Lines 8-30
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runs at most logm times. The probability amplification for loop in Lines 10-17 runs
2 logm times. Line 13 is executed at most O(2g log2 m) times. Since Line 13 is the
most expensive step in the probability amplification for loop from Lines 10-17, the
complexity of the algorithm is Õ(N2g +Nmg2 +mg3).

Note that when g = O(1), Theorem 4 runs in nearly quadratic time.

7 Runtime comparison

Recall that Algorithm 4 runs in Õ(mω), Algorithm 5 runs in O(Nmω−1) time and
Algorithm 6 runs in Õ(N2g +Nmg2 +mg3) time, where n is the number of vertices,
m is the number of edges and N is the total number of simplices.

Note that Dey et al. prove a bound of O(Nω +N2g) on the running time of their
algorithm [13, Section 3.2]. However, a more refined analysis shows that the algorithm
described in Dey et al. [13] runs in O(nmg+Nmω−1) time. This is because the annota-
tion algorithm takes O(Nmω−1) time in the worst case, whereas the ShortestCycle
procedure in [13] takes O(nm) time. Using the recurrence relation in [13, Section 3.2]
we obtain a time complexity bound of O(Nmω−1 + nmg).

Comparison of Algorithm 4 with Algorithm 5

For families of complexes with N1−ϵ = ω(m) for some ϵ > 0, Algorithm 4 is faster
than Algorithm 5. However, for families of complexes such as triangulations of surfaces
with N = Θ(m), Algorithm 5 is faster than Algorithm 4.

Comparison of Algorithm 4 and Algorithm 5 with Dey et al.’s algorithm

For surfaces with g = Θ(m), Algorithms 4 and 5 are faster than Dey et al.’s algorithm
since Dey et al.’s algorithm takes at least Θ(m2.5) time since n = Ω(m0.5), while
Algorithms 4 and 5 run in Õ(mω) and O(mω) time, respectively.

For dense simplicial complexes with n vertices, Θ(n2) edges and Θ(n3) 2-simplices,
Algorithm 4 is faster than Dey et al.’s algorithm since Algorithm 4 runs in Õ(n2ω)
time, whereas Dey et al.’s algorithm runs in O(n2ω+1) time.

For surfaces with bounded g, Dey et al.’s algorithm is slightly faster than Algo-
rithm 4 since Dey et al.’s algorithm runs in O(mω) time, whereas Algorithm 4 runs
in Õ(mω) time.

Finally, it is easy to check that Algorithm 5 is asymptotically always at least as
fast Dey et al.’s algorithm, whereas in some important cases (such as surfaces with
g = Θ(m) as discussed above), it is indeed much faster.

Comparison of Algorithm 6 with Algorithm 4 and Algorithm 5

When N = O(m) and g is bounded, Algorithm 6 is faster than Algorithms 4 and 5.
On the other hand when g = Θ(m), Algorithms 4 and 5 are faster than Algorithm 6.

Comparison of Algorithm 6 with Dey et al.’s algorithm

For surfaces with bounded g, Algorithm 6 is faster than Dey et al’s algorithm since
Algorithm 6 runs in O(m2) time whereas Dey et al’s algorithm runs in O(mω) time.
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On the other hand, for surfaces with g = Θ(m), Dey et al.’s algorithm is faster than
Algorithm 6 since Algorithm 6 runs in O(m4) time whereas Dey et al.’s algorithm
runs in O(mω) time.

8 Implementation

While the algorithms described in the previous section have good worst case runtime
bounds, they are not amenable to a simple and efficient implementation. We use
ideas from Algorithm 5 to implement an algorithm that exhibits good performance
in practice by leveraging existing state-of-the-art software for matrix reduction and
minimum cycle basis computation. We begin by describing the data representations
for input/output and intermediate storage.

8.1 Input/output format

Geometric simplicial complex input are expected to be in the OFF [1] file format. The
current implementation assumes that the complex is embedded in R3 but this may be
extended to high dimensional Euclidean spaces. The weight of an edge in the complex
is assumed to be given by the Euclidean distance between its end point vertices. A
general simplicial complex input may be specified in a simple text file that stores
the 2-skeleton of the complex. The text file contains the number of vertices, edges,
and triangles, followed by a list of weighted edges and finally a list of triangles of
the complex, all in ASCII format. An edge is represented as a 3-tuple {i, j, w} in a
separate line where i, j are the indices of its end point vertices and w is the edge
weight. A triangle is represented as a 3-tuple {i, j, k} in a separate line where i, j, k
are the indices of the vertices of the triangle.

The output is available in a single text file consisting of the betti number (β1)
followed by a list of cycles that represent a minimum homology basis. Each cycle is
represented as a sequence of vertex indices.

8.2 Internal data representation

We maintain the following in-memory data structures for querying the input simplicial
complex and storing the results of the intermediate steps of the algorithm.
1. vertexList: A list of vertices and their location in R3 for geometric simplicial

complexes.
2. triangles: A list of triangles of the complex. Each triangle is stored as a 3-tuple

representing the index of its three vertices in vertexList.
3. vPairToE: Edges of the complex are enumerated. The index edgeNo of an edge

ranges from 1 to m. vPairToE is a map where each key is a pair of vertex indices
corresponding to the end points of an edge and the associated value is the edgeNo
of that edge.

4. eToVPair: The inverse map of vPairToE. A map that specifies the pair of vertex
indices corresponding to an edge.

5. eToWeightMap: A map from an edge index to the edge weight.
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6. graph: The 1-skeleton of the input simplicial complex, stored as a Boost adjacency
list [5].

8.3 Algorithm

We now describe FastLoop, a practical implementation of Algorithm 4. FastLoop
employs alternate algorithms for computing the minimum cycle basis and column rank
profile. These algorithms are efficient in practice, amenable to parallel computation,
and their implementation is made available within reliable software libraries. Below,
we provide an overview of the main steps of FastLoop.
1. Load the input simplicial complex and populate the key data structures described

in the previous section.
2. Compute a minimum cycle basis (see Section 8.3.1).
3. Assemble the matrix Y, the boundary matrix prepended to the minimum cycle

basis (Algorithm 5)
4. Employ a column reduction algorithm that adds columns from left to right to

compute the column rank profile (see Section 8.3.2).

8.3.1 Computing a minimum cycle basis

We use parmcb, the Parallel Minimum Cycle Basis library [14], to compute a mini-
mum cycle basis of the 1-skeleton of the input simplicial complex. The parmcb library
implements a suite of algorithms that are broadly based on De Pina’s algorithm Algo-
rithm 1 but differ in the step that computes a minimum weight cycle that is required in
Step 3 of the algorithm. It supports parallel execution using MPI and Intel TBB. The
input graph is represented using the graph data structure from the Boost library. For
our purpose, we build a Boost library adjacency list representation of the 1-skeleton of
the 2-complex (graph). The minimum cycle basis is reported as a collection of cycles,
where each cycle is represented as a list of edges.

8.3.2 Computing the minimum homology basis

Any matrix reduction algorithm that adds columns from left to right can be used
to compute the column rank profile. Specifically, the indices of the non-zero columns
at the end of such a reduction procedure gives the column rank profile. We use the
standard reduction algorithm in the PHAT library [4]. PHAT is a library of matrix
reduction algorithms [3] implemented in C++ for computing barcodes in persistent
homology. We recall the standard reduction algorithm in Algorithm 7. Theorem 4
implies that the matrix Y is sparse. This motivates the use of PHAT, which is opti-
mized to exploit the sparsity of the underlying matrix. PHAT supports multiple sparse
representations of the matrix. We choose the bit tree representation [3, Section 4],
where each column is represented as a balanced binary tree of row indices that con-
tain a 1 in that column. The matrix is maintained as a list (vector) of such balanced
binary trees.
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Algorithm 7 Standard reduction algorithm for matrix reduction [3]

1: Input: A 0-1 matrix ∂ with m columns.
2: low(j) denotes the row index of the lowest 1 in ∂, it is undefined if column j

contains only zeros.
3: for j = 1 to m do
4: while there exists j0 < j with low(j0) = low(j) do
5: Add column j0 to j

9 Experimental results

We now describe results from our computational experiments on various real world and
synthetic datasets. The experiments serve two primary purposes. First, they validate
the correctness of FastLoop. Second, they reveal the efficiency of the algorithm when
measured against the size and type of the input complex and the number of CPU
cores deployed. All experiments were performed on an Intel workstation powered by
a Xeon(R) Gold 6230 CPU with 20 cores at 2.10 GHz and 384 GB RAM running
Ubuntu Linux. Parallelization in computing the minimum cycle basis was achieved
using Intel Thread Building Blocks (TBB).

9.1 Cycle representatives

The real world datasets include 2D meshes and 3D volume meshes, both manifold
and non-manifold. Table 1 lists all datasets and Figure 3 shows results on a subset of
the datasets. The top two rows in Figure 3 are polygonal meshes from the Visionair
shape repository [31]. These meshes are medium sized datasets consisting of 30000–
70000 simplices. The accompanying video (Online Resource 1) shows the computed
cycle representatives from different view points.

Computational experiments on the real world datasets help demonstrate the prac-
tical utility of the algorithm via direct visualization of the loops and tunnels. Our
algorithm computes optimal cycle representatives for holes of different sizes. The
third and fourth rows in Figure 3 show data from the PCOD hypothetical zeolite
database [11]. Zeolite structures are known to contain pores. Hypothetical structures
are generated computationally and their properties are studied to determine if they
are similar to existing zeolites with desirable properties. A distance field that captures
distance from a point to its nearest atom is computed for each hypothetical zeolite
structure using the Zeo++ software [23]. The structure of three hypothetical zeolite
materials are visualized by rendering the zero isosurface, the preimage of distance
value 0. Zeolites are known to contain pores. Identifying the pores and quantifying
their size is an important problem because the pore size determines the chemical prop-
erties of the zeolite. Zeolites also have a spatially repeating structure that contributes
to a larger value of β1.

Figure 4 shows the surface of two protein molecules, 3EAM and 1OED. Both
proteins contain a central tunnel and multiple long pores. A subset of the cycles of the
minimum 1-homology basis, including the central tunnel, are highlighted in middle
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column. All the cycles of the minimum 1-homology basis are highlighted in the right
column.

9.2 Verifying correctness

Notwithstanding the theoretical correctness of the algorithm, we undertake several
measures to ensure correctness of the implementation in FastLoop. The two major
components of FastLoop are based on highly optimized, well maintained, stable, and
well tested software. Specifically, the library parmcb [14] is used for computing the
minimum cycle basis (MCB), and PHAT [4] is used for the reduction step to compute
the minimum homology basis (MHB) from the MCB. We also compare the output
of FastLoop and ShortLoop [12, 26] on the real world datasets. The Betti numbers
reported by both software match each other, and for a majority of the datasets the
MHB reported by both software also match. However, we found a few examples where
the weight of the MHB computed by FastLoop differed from that reported by Short-
Loop. In order to explain this discrepancy, we performed a few sanity checks on the
outputs of Shortloop and FastLoop. In particular, we checked if the loops reported
by the software are indeed non-bounding and independent. We observed that a few
cycles reported by ShortLoop fail the independence check, specifically in the cases
when ShortLoop reports a smaller weight basis when compared to FastLoop. This dis-
crepancy can also be detected visually in some instances. Figure 2 shows an example
where the collection of basis cycles reported by ShortLoop (red) misses the central
hole of the wheel. The developers of ShortLoop have been informed about this issue.

ShortLoop FastLoop

Fig. 2 ShortLoop misses the central hole (left) whereas FastLoop correctly identifies the cycle rep-
resenting the hole.

9.3 Synthetic data

We also present results of experiments on synthetic datasets, consisting of two classes
of random complexes, with the aim of studying the scaling behavior of our algorithm.
The first class is random clique complexes, a well-studied class of random complexes.
Let n be the number of vertices in the complex and let p be a probability parameter.
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Wheel-1(β1=36) Hip Joint(β1=46) Crank(β1=18)

Mother-Child(β1=8) Laughing Buddha(β1=208) Neptune(β1=6)

Zeolite-1(β1=54) Zeolite-2(β1=96) Zeolite-3(β1=108)

Zeolite-4(β1=124) Zeolite-5(β1=112) Zeolite-6(β1=8)

Fig. 3 Minimum 1-homology basis (blue) computed on various 2D and 3D datasets.
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3EAM Molecule Subset of MHB with central cavity MHB

10ED Molecule Subset of MHB with central cavity MHB

Fig. 4 Minimum homology basis computed for two membrane proteins. Left: A rendering of the
molecular surface. Right: The minimum homology basis. Middle: A subset of cycles in the basis that
represent the central tunnel and some of the larger pores in the protein.

A two dimensional clique complex C(n, p) is constructed as follows: an edge {i, j} is
chosen in C(n, p) with probability p, and a 2-simplex is included in C(n, p) if all of its
edges belong to C(n, p).

A second class of 2-complexes are random triangle complexes R(n, p), which are
constructed as follows. Let n be the number of vertices and p be a probability param-
eter. A triangle {i, j, k} is included in R(n, p) with probability p. When the triangle
{i, j, k} is included, all edges on its boundary are also included in R(n, p).

9.4 Runtime and scaling

Table 1 reports runtimes for both real world and synthetic data. We note that, in
general, the runtimes are short for medium sized datasets. The table also presents
a comparison against ShortLoop. We observe a significant improvement in execution
time over ShortLoop, with a speedup of 1-2 orders of magnitude in some cases. Short-
Loop does not terminate within a reasonable time frame ( 1 day) for the synthetic
data. So, we omit a comparison on these random complexes.

The synthetic datasets help study the scaling behavior of FastLoop. We choose
three probability parameters for each class of random complexes, (0.025, 0.05, 0.075)
for random clique complexes and (5× 10−5, 10−4, 2× 10−4) for random triangle com-
plexes. We fix value of the probability parameter p and study the runtime performance

24



against increasing size of the complex. Figure 5 shows a log-log plot of the total run-
ning time against number of simplices in the input complex. Figure 6 shows a log-log
plot of the total running time against the number of edges in the complex. Both plots
are linear indicating that the runtime is a power function of the form axb. We fit a
straight line to the points on the plot and compute its slope in order to estimate the
exponent b of the power function.

The value of the exponent for the plot of runtime vs. total simplices in Figure 5
is at most 1.8 for clique complexes and at most 2 for random triangles complexes.
The exponent is at most 2 for both classes of complexes in the plot of runtime vs.
number of edges. The empirically observed complexity is better than the theoretical
worst case runtime complexity of Algorithm 5. Figure 8 shows a plot of MCB size,
the cardinality of the multi-set of edges in the minimum cycle basis. The MCB is the
output of the first step of the algorithm. The scaling behavior of the MCB size is
indicative of the rate determining step of the algorithm. Indeed, a comparison between
Figure 7 and Figure 5 shows that the time taken for computing the MCB is several
orders of magnitude greater than the subsequent steps, and that it constitutes a large
fraction of the overall runtime.

dataset #Vertices #Edges #Triangles Time Time
(FastLoop) (ShortLoop)

Wheel-1 6970 21000 14000 35s 245s
Wheel-2 2476 7500 5000 7s 80s
Genus3 2462 7500 5000 7s 84s
Mother-Child 6494 19500 13000 34s 40s
Neptune 6246 18750 12500 30s 30s
Zeolite-1 17275 46084 30000 125s 80s
Zeolite-2 13410 38200 25000 90s > 2 hr
Zeolite-3 12962 38116 24999 100s > 2 hr
Zeolite-4 7629 21741 14128 300s > 2 hr
Zeolite-5 24643 72075 47435 360s > 2 hr
Zeolite-6 24573 71587 46963 300s > 2 hr
Protein-1(3EAM) 30374 90163 60000 480s > 2 hr
Protein-2(1OED) 29846 89949 59999 540s > 2 hr

Table 1 Runtime analysis. FastLoop outperforms ShortLoop in terms of total runtime
with a speedup of 10× or more in many instances.

10 Discussion

In this paper, we show that questions about minimum cycle basis and minimum
homology basis can be naturally recast into the problem of computing rank profiles of
matrices, leading to fast algorithms with simple and elegant high-level descriptions.
The column rank profile (or the earliest basis) of a matrix has previously been used to
compute the minimum homology basis of a simplicial complex [7, 13]. Such a greedy
approach that picks, at each step, an independent cycle of the smallest index, works
because of the matroid structure of homology bases and cycle bases. The novelty of
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Fig. 5 Scaling study. A log-log plot of running time vs. total number of simplices in the input
complex. The running time scales at most quadratically with the number of simplices.

Fig. 6 Scaling study. A log-log plot of running time vs. number of edges in the input complex. The
running time scales quadratically.

our approach is the observation that independence can be efficiently checked owing to
the sparsity of the matrices comprising of candidate cycles.

In Section 6, we describe a randomized g-sensitive algorithm for computing mini-
mum homology basis that runs in nearly quadratic time when g = O(1). We believe
this is the first such algorithm for this problem for general complexes.

Experiments on real-world data sets reveal how FastLoop captures the one dimen-
sional “holes” that may be useful in a variety of practical applications. FastLoop
computes the minimum homology basis of a variety of medium to large sized real-
world data sets within a few minutes and consistently outperforms the state of the
art implementation, ShortLoop. The algorithm as well as the software consist of two
major components, namely computing a minimum cycle basis followed by a reduc-
tion step. The two components are based on independent algorithms, which may be
replaced in the future with alternate methods to achieve better theoretical complexity
or practical running times.
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Fig. 7 A log-log plot of the time taken to compute the MCB vs. number of simplices in the input
indicates that this step scales quadratically with the input.

Fig. 8 The number of edges in the MCB increases quadratically with the size of the input, which
explains why computing the MCB is the rate determining step.

Supplementary information. The accompanying video (Online Resource 1) shows
the computed cycle representatives from different view points.
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