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Abstract—Analyzing depressions plays an important role in meteorology, especially in the study of cyclones. In particular, the study of
the temporal evolution of cyclones requires a robust depression tracking framework. To cope with this demand we propose a pipeline
for the exploration of cyclones and their temporal evolution. This entails a generic framework for their identification and tracking. The
fact that depressions and cyclones are not well-defined objects and their shape and size characteristics change over time makes this
task especially challenging. Our method combines the robustness of topological approaches and the detailed tracking information from
optical flow analysis. At first cyclones are identified within each time step based on well-established topological concepts. Then
candidate tracks are computed from an optical flow field. These tracks are clustered within a moving time window to distill dominant
coherent cyclone movements, which are then forwarded to a final tracking step. In contrast to previous methods our method requires
only a few intuitive parameters. An integration into an exploratory framework helps in the study of cyclone movement by identifying
smooth, representative tracks. Multiple case studies demonstrate the effectiveness of the method in tracking cyclones, both in the
northern and southern hemisphere.

Index Terms—Cyclone, scalar field, time-varying data, track graph, spatio-temporal clustering, tracking.
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1 INTRODUCTION

C YCLONES are large-scale, nonlinear, coherent, and long-
lived structures that exist in planetary atmospheres.

They are characterized by strong vertical winds and a strong
nonlinear momentum balance in the horizontal winds. A
cyclone derives energy when water vapor condenses within
it releasing the latent heat of condensation. Extratropical
cyclones play an important role in the general circulation
of the earth’s atmosphere by transporting energy, angular
momentum, and water vapor towards the poles from the
subtropics [1].

Extratropical cyclones are typically generated in the
winter in subtropical baroclinic zones (or “storm tracks”)
and move towards the poles [2]. Quite often, these cyclones
make landfall and are commonly known as “winter storms”
in the mid-latitudes. Due to their economic and social
impact, prediction and tracking of extratropical cyclones
remains an important aspect of mid-latitude meteorology.
With the projected changes in storm tracks due to climate
change [3], understanding the processes governing the gen-
esis and life-cycle of extratropical cyclones is a priority. The
first step towards understanding these processes is to be
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able to identify and track individual cyclones across time
and space, and this forms an important part of cyclone
visualization. In this paper we propose a cyclone explo-
ration framework based on a novel extraction and tracking
algorithm.

1.1 Related work

Cyclone tracking is a well studied problem in meteo-
rology, with many available algorithms for objective (i.e,
automated) identification of cyclones from observational
data [4], [5], [6], [7], [8] (See [9] for a comprehensive list).
Traditional methods used for cyclone tracking are usually
dependent on many parameters requiring specific domain
knowledge. Parameters include spatial extent of the cyclone,
strength of the cyclone and gradient based thresholds. The
diversity of algorithms available reflects the diversity of
requirements of users and the diversity of operational defi-
nitions of a cyclone used in the literature [9]. While a variety
of methods exist for cyclone centre identification, cyclone
tracking in most algorithms is performed by some variant
of a “nearest neighbour” heuristic. The method begins with
a first guess for the future location of a cyclone. A cyclone
centre at the next time step is considered to be part of a
cyclone if its distance, in a chosen metric, from the first
guess location is lower than a threshold value. A notable
exception is the method proposed by Inatsu [7], which
tracks connected regions rather than single points, and
considers two connected regions from different time steps to
belong to the same cyclone if the regions overlap. A method
to track multicentre cyclones was introduced by Hanley
and Caballero [8]. It uses conventional identification and
tracking techniques but includes two additional steps. First,
cyclone centres are merged to form cyclone systems and
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Fig. 1. Cyclone identification and tracking workflow. Blocks in yellow indicate computations required to construct the intermediate graphs and tracks.
The associated parameters are listed in the green boxes.

second, a ‘track surgery’ is performed to extract significant
tracks. It is capable of identifying a multicentred cyclone
as a single cyclone. A multicentered cyclone may contain
splits and mergers during its life cycle but is represented
as a single track. More closely related to our work is the
work by Doraiswamy et al. [10] for tracking clouds. They
compute and display global and local tracks of clouds and
cloud systems. However, their approach does not scale well
for cyclones because it results in a large number of tracks
with limited lifetime, resulting in a cluttered visualization.

Most of these methods work well within their restricted
setting. However they also leave many challenging prob-
lems unanswered. Cyclones are typically defined via ex-
tremal values of sea level pressure or relative vorticity.
Each extremum of sea level pressure or relative vorticity is
considered as a depression. Cyclones can contain multiple
depressions, each having it’s own fuzzy border or structure.
Their shape and size changes strongly over time. The lifes-
pan of cyclones can vary from a day to multiple weeks.
This makes them extremely difficult to identify and track.
Naı̈ve Gaussian smoothing can ease these effects. However,
it might also remove small but still important cyclones.
Further, the interaction and exploration possibilities are so
far largely limited.

Several approaches to tracking features have been pro-
posed within the visualization literature. Most relevant here
are the isocontour and topology-based approaches, where
the regions enclosed by isosurface or isocontour (in gen-
eral, level set) components correspond to the features of
interest [11]. The level set is computed either for the input
scalar field or for a scalar field derived from the input data.
The Reeb graph and its loop-free version, the contour tree,
are topological structures that provide an abstract represen-
tation of the connectivity of level sets for the scalar field
restricted to a single time step [12]. The evolution of the level
set connectivity over time can be computed efficiently and
stored in a time-varying Reeb graph [13] or a time-varying
contour tree [14]. Most methods that are based on a level
set based approach to feature identification and tracking
build a directed acyclic graph (DAG) representing all fea-

ture tracks. Correspondence between features in consecutive
time steps is identified either via spatial overlap [14], critical
point tracking [15], or via an analysis of join and split
trees [16], [17]. The concept of combinatorial feature flow
fields [18] provides a purely topological tracking method
for two-dimensional scalar fields. It also introduces a spatio-
temporal importance measure to the feature tracks. Our
method also constructs a DAG to represent all correspon-
dences between the cyclone centres. However, different
from the above methods, we compute feature tracks via a
spatio-temporal analysis. A novel track clustering step helps
identify unique and significant cyclone tracks.

Noise in the data results in a large number of features
being reported. The above feature tracking methods use
topological simplification to reduce the number of critical
points and hence remove the insignificant features [16].
In contrast to the above methods, our spatio-temporal
approach ensures that the temporal component plays an
important role in determining the significance of a cyclone.
Independent noise removal within each time step may result
in the removal of cyclone centres in the early and late stages
of a cyclone’s lifetime when the spatial component is not
significant.

1.2 Contributions
We propose an exploratory framework using an extraction
and tracking algorithm. In contrast to conventional methods
it is not a two-step approach that identifies and tracks
cyclone centres separately. Instead, it utilises the temporal
correlation between time steps to identify cyclones. Our
method first combines, topological feature extraction with
optical flow tracking to generate short candidate tracks.
In a second step, the short candidate tracks are clustered
and assembled to build representative cyclone tracks. Using
topological concepts like the join and split trees results in
a stable identification of the initial candidates. The method
can robustly deal with multicentre cyclones without clut-
tering the visualization, see Figure 4(c). Furthermore, it
supports the identification of merge and split events. Our
integrated approach is stable with respect to spatial and



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JANUARY XXXX 3

temporal noise resulting in smooth representative cyclone
tracks. A query-driven visualization framework with a few
easy to understand parameters enables a flexible means
of visualizing features of interest. It also enables climate
scientists to explore the sensitivity of the obtained results
to both parameter choices and the scalar field being used
for identification of cyclones. This motivates the formulation
and implementation of the framework described in this
paper.

The main contributions of the paper are:

1) Robust identification of cyclonic regions using a
spatio-temporal approach combining topology, op-
tical flow, and clustering.

2) Computing representative tracks per cyclone result-
ing in a clutter free visualization.

3) Supporting query based user interaction enabled by
a cyclone motion graph and a cyclone track graph.

4) A generic framework for tracking extrema of mean
sea level pressure and relative vorticity based on a
few easy-to-understand parameters.

Case studies from IMILAST [9], a recent intercompari-
son study, show that the proposed exploratory framework
computes cyclone tracks that are comparable to results from
existing methods while being generic and flexible enough to
allow the use of either scalar field (mean sea level pressure
or relative vorticity). Statistics on the spatial and temporal
variability of cyclones are compared with previously known
results to validate the method.

2 CYCLONE IDENTIFICATION AND TRACKING

A cyclone centre is often defined as a local minimum of
mean sea level pressure or an extremum of cyclonic vortic-
ity [9]. In this section, we describe methods for identifying
and tracking cyclones that are based on a novel combination
of techniques such as topological analysis and clustering
applied to time-varying data. The method consists of a
pipeline of four different steps: (i) the extraction of cyclone
centres, (ii) the computation of the raw cyclone motion graph
based on the optical flow, (iii) the distillation of the final
cyclone track graph summarising the coherent movements
of dominant cyclonic regions, and (iv) the visualization
and computation of representative tracks. Figure 1 presents
an overview of the algorithm and summarizes these steps.
After introducing the cyclone data the individual steps will
be discussed in more detail in the following.

2.1 Data
The data used in this study is part of the ERA-Interim
reanalysis dataset [19], which is generated by a numerical
model constrained by observational data. The data includes
a large variety of surface parameters, describing weather
as well as ocean-wave and land-surface conditions. In this
project we are especially interested in the part of the data
related to cyclone formation. Cyclone centres are charac-
terised by the balance in forces due to the pressure gradient
and the Coriolis forces. So, they tend to have a pressure
minimum accompanied by strong rotational wind near the
centre. Due to this reason, the quantities typically used
to track cyclones are the vorticity (defined as the vertical

component of the curl of the horizontal winds) and mean
sea level pressure (MSLP). We use both MSLP and relative
velocity in our analysis. Relative vorticity is defined as the
vorticity of the wind relative to the earth’s planetary vortic-
ity, which is induced due to rotation. Clockwise movements
(negative relative vorticity) in the southern hemisphere and
counter clockwise movements (positive relative vorticity) in
the northern hemisphere are cyclonic. The relative vorticity
field is defined at a pressure level of 850 millibars, which
represents the free atmosphere above any boundary layer
effects. Both fields are available in the ERA-Interim dataset
on an equiangular grid with a spatial resolution of 0.75◦

in both latitude and longitude and a temporal resolution
of 6 hours. For each time step, the field is available on a
240 × 480 grid. Since reanalysis data is typically provided
on a latitude-longitude grid, the effective resolution of the
data increases closer to the poles. This increase in resolution
increases the number of cyclones resolved closer to the
poles, resulting in a positive bias in the number of cyclones
identified in the polar regions. To overcome this issue, the
data is first interpolated onto an equal-area projection (the
Lambert equal area projection for each hemisphere, centered
on the north/south pole) to equally weight all regions,
before interpolating back onto a regular latitude-longitude
grid (following [8]). For a given study, the number of time
steps is determined by the time period under consideration.

2.2 Cyclone Centres
Potential cyclone centres are identified by computing ex-
trema of the two fields. In particular, local minima of
MSLP, local minima of relative vorticity in the southern
hemisphere, and local maxima of relative vorticity in the
northern hemisphere correspond to potential cyclone cen-
tres. These definitions are sensitive to noise and the resulting
list of centres needs to be filtered to remove noise and
weak depressions, and hence to potential cyclone centres.
Instead of applying a typical Gaussian smoothing operator,
we propose to use a level-set driven simplification for this
task. Specifically, for the MSLP scalar field, we compute a
topological structure called the join tree and employ a level-
set driven simplification to remove or merge minima corre-
sponding to weak depressions. Given a real value c, a level
set of MSLP is defined as the preimage of the isovalue c. A
sub-level set of MSLP is the preimage of the interval (−∞, c].
The join tree is an abstract representation of the connectivity
of sub-level sets of a scalar field, see Figure 2(a). Leaf nodes
of the join tree correspond to local minima of the scalar
field and the root node of the tree corresponds to the global
maximum. Given an isovalue threshold, the corresponding
level set decomposes the join tree into multiple subtrees, see
Figure 2(b). Each subtree corresponds to a single cyclone
and its deepest minimum is assigned as the cyclone centre.
We refer to the subdomain that maps to this subtree as
the cyclonic region. Local minima with MSLP higher than
the threshold belong to the subtree containing the global
maximum and are discarded.

A remaining challenge is to find an appropriate isovalue
to be used as a threshold. We propose an automatic se-
lection procedure where the join tree plays a crucial role
in determining an appropriate isovalue threshold (see Sec-
tion 3). Further, the join tree data structure enables efficient
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processing of the minima to locate the cyclone centres.
Alternatively, local extrema of relative vorticity may also be
used to identify cyclone centres. The same method as above
is applied on the relative vorticity data with a focus on
maxima for the northern hemisphere and minima for south-
ern hemisphere. Figure 3 shows cyclones identified over
a region near Australia using the above method applied
on relative vorticity data. The split tree, which represents
connectivity of super-level sets, is computed for identifying
cyclone centres in the northern hemisphere. Local maxima
of relative vorticity correspond to leaf nodes of the split
tree and represent the cyclone centres. Again, the level set
corresponding to an input isovalue threshold decomposes
the tree into subtrees representing cyclonic regions.

(a) (b)

Fig. 2. (a) Join tree is an abstract representation of the connectivity of
sub-level sets of a scalar field. Height function defined on a 2D domain
(left) and the corresponding join tree (right). Leaf nodes of the tree are
minima (blue) of the scalar field or its global maximum (red). (b) Each
subtree below a chosen level set corresponds to a cyclone centre.

Fig. 3. Cyclones detected in the southern hemisphere during May 1994
for a vorticity isovalue threshold of −6× 10−5 s−1 The black contours
have isovalue less than the threshold and belong to the cyclonic regions
reported by the algorithm. Red contours have isovalue greater than the
threshold. Centres surrounded only by red contours are discarded as
shallow cyclones. Cyclonic regions that share a common color have
either split in the past or will merge in future.

2.3 Cyclone Motion Graph

Studying the temporal behavior of cyclones requires the
computation of cyclone tracks. Computing correspondences
between cyclone centres in successive time steps using a

simple distance-based neighborhood search may not pro-
duce expected results, particularly for extra tropical cy-
clones, because the mean flow advecting the cyclones can
vary significantly. Instead, we utilize the optical flow be-
tween the MSLP distribution (or relative vorticity) for two
consecutive time steps to establish the correspondences.
This flow field is used to construct a cyclone motion graph,
whose nodes are cyclone centres and arcs indicate corre-
spondences between two cyclone centres. An arc is inserted
between cyclone centres from two consecutive time steps
if the optical flow connects the corresponding cyclonic re-
gions. Details about the generation of these correspondences
can be found in Doraiswamy et al. [10], who employ a
similar approach to find correspondences between clouds.
The optical flow field is computed using OpenCV [20], [21].
A key advantage of using the optical flow field is that
the tracking results depend on the entire cyclonic region
as opposed to just the cyclone centre. Figure 4 shows all
the extracted paths generated by traversing the cyclone
motion graph. We refer to these paths as the raw tracks.
The algorithm identifies 1092 raw tracks during the month
of May 1994. This visualization gives a first impression of
the cyclones in the region during the month of May but the
image is cluttered and contains several redundant and short
tracks. The figure shows multiple tracks from different days
of the month overlaid on the same region, which evidently
make it hard to visually recognize individual tracks or
trends. It is also not possible to see clusters of cyclones
moving together or separating.

2.4 Cyclone Track Graph
The goal of the final cyclone track graph is to summarize
the dominant motion of the cyclone and identify trends
of coherent motions of cyclone clusters. It serves as the
major input for the visual exploration framework. The input
for the generation of this graph are the raw tracks from
the cyclone motion graph. Direct clustering of the raw
tracks, however, would not give the desired result since it
is possible that two tracks are moving in a coherent fashion
for some small time window but are not globally similar.
We capture these coherent motions by clustering tracks
within a moving time window of length w. The parameter
w corresponds to the minimum track length that we are
interested in. Consider the raw tracks shown in Figure 5.
A track whose length is less than w is discarded. The red
and purple tracks are similar within the [t, t + w] time
window. As a distance measure we use the sum of square
distances between corresponding cyclone centres of two red
(or purple) tracks. For each time window similar tracks are
clustered into a group and represented by a single node in
the cyclone track graph. A directed arc is inserted between
two nodes that belong to consecutive time windows if at
least a single track from the first node flows into the second
node, see Figure 6. A node that belongs to a time window
[t, t+ w] may be represented by the raw track in the cluster
that passes through the lowest minimum (MSLP) or highest
maximum (relative vorticity) at time t. Representative tracks
corresponding to all paths in the cyclone track graph are
computed next. Figure 4(b) shows all representative tracks
for w = 9 (54 hours, 10 timesteps), with a total of 1479 clus-
ter centres and 137 connected components of cyclone track
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(a) (b) (c)

Fig. 4. (a) Raw tracks obtained in the southern hemisphere during May 1994 using a join tree based cyclone centre identification step followed
by optical flow field based tracking. Raw tracks from different days of the month may pass through the same region. (b) Track clusters containing
tracks within a time window of 54 hours (10 time steps). A connected component of the cyclone track graph is highlighted. This component may be
selected for further analysis. (c) One representative track is selected using an exploratory framework and rendered after smoothing. The cyclonic
regions may be viewed on demand, see accompanying video.

graph. The highlighted connected component is selected for
further study. The tracks are cohesive when compared to the
raw tracks and are fewer in number.

Current approaches to cyclone tracking identify signif-
icant cyclone centres within each time step and track only
these significant cyclone centres. In contrast, our approach
to tracking considers both the spatial and temporal distri-
bution of cyclone centres to identify representative cyclone
tracks. A natural advantage of our approach is that it reports
a single track even when the cyclone contains multiple min-
ima (for MSLP) or maxima (for relative vorticity). Further,
the former approaches are sensitive to noise because each
time step is processed independent of the next. In particular,
cyclonic regions in the early and later stages of a cyclone’s
lifetime may have a small spatial extent and may hence get
filtered away by the former approaches.

Fig. 5. Clustering tracks within a moving time window. All tracks that do
not span the entire window are ignored. A clustering algorithm is applied
for each window. Each cluster is represented as a node in the cyclone
track graph.

2.5 Representative Tracks
An exploratory framework supports the selection of indi-
vidual tracks for further study. Representative tracks are
processed to generate smoother geometry. Specifically, all

Fig. 6. An edge is inserted into the cyclone track graph if at least one
track passes from one node to another in the next time window. The time
windows are shown adjacent to each other for clarity.

vertices on a representative track are considered as control
points to compute a B-spline curve [22]. Figure 4(c) shows
the selected representative track with smooth geometry. The
cyclonic regions for this track are also computed on demand
as the connected components of the sub-level set / super-
level set that contain the cyclone centres, see accompanying
video. Two cyclonic regions are assigned the same color if
they belong to a common region in the past and split, or
will merge in future. This merge/split information is readily
available from the cyclone motion graph. The accompanying
video shows a single representative track selected using the
exploratory framework. A single smooth track is extracted
despite the presence of multiple merges and splits. Other
algorithms report multiple tracks near New Zealand and
employ specialized postprocessing techniques such as track
surgery to remove clutter. In contrast, the track clustering
based method generates a single track without the need for
additional postprocessing.
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3 PARAMETERS AND THRESHOLDS

We now discuss three different parameters that determine
the output (Figure 1) and choice of thresholds for each
parameter. We aim to develop a generic framework and
hence attempt to reduce the number of parameters that need
to be tuned by the user. In our experiments, the values for
two of the parameters are fixed to constants and only one
parameter is tuned for different data sets.

3.1 Isovalue threshold
Cyclone centres are identified from the join/split tree based
on an isovalue parameter. A plot of the number of level set
components accumulated over all time steps for increasing
isovalues helps identify an appropriate threshold. The num-
ber of level set components equals the number of subtrees
of the join/split tree and the number of cyclone centres.
Consider the plot in Figure 7 for relative vorticity computed
during May 1-30, 1994. The field values are normalized
to lie within the interval [0,1] so that the parameter value
is chosen as a fraction of the range of field values. Local
minima of relative vorticity correspond to cyclone centres in
the southern hemisphere. So, the join tree is computed and
analyzed here. A low isovalue selects only the most intense
cyclone centres and hence the number of components is
small. The number of level set components increases as the
threshold increases. This is followed by a rapid increase due
to the presence of noise and eventually the number of level
set components decreases because the different components
merge. A point in the neighborhood of the knee of the curve
(high curvature region) in this plot is chosen as the thresh-
old. The plot is similar for other time periods considered in
our experiments. In this case, we chose a threshold value of
0.45.

Sensitivity: We now study the effect of the choice of
isovalue threshold on the results. Consider extreme val-
ues (both low and high) and values close to the chosen
threshold of 0.45. For each threshold value, we compute and
count the raw tracks from the cyclone motion graph and
representative tracks from the cyclone track graph. First,
we discuss observations for extreme isovalue thresholds.
Figure 8 shows the raw tracks over the Australian bay
area during the month of May 1994 for different isovalue
thresholds. Figure 8(b) shows the raw tracks computed for
an isovalue threshold of 0.45 and may be considered as
a reference. A low value of 0.3 results in a small cyclone
motion graph and hence significantly small number of raw
tracks. At a high value of 0.6, level set components merge
into large components and hence raw tracks are longer but
small in number. The total number of raw tracks over the
southern hemisphere and the symmetric difference with the
set of raw tracks obtained for a threshold of 0.45 are shown
in Table 1. Next, we study how the results are affected
by small changes to the isovalue threshold. The symmetric
difference with the set of raw and representative tracks for
the reference threshold of 0.45 is computed for thresholds
in the range [0.44, 0.46]. We note that the cardinality of
the symmetric difference increases gradually as expected.
A visual inspection reveals the possible reason for the sig-
nificant size of the symmetric difference. Figure 9 shows a
few of representative tracks together with the symmetric

difference for neighboring threshold values. We observe
minor variations in the genesis and lysis of the cyclone
tracks and no changes otherwise.

Fig. 7. Plot of number of isocontour components for various isovalues
of relative vorticity during May 1-30, 1994. The relative vorticity values
are normalized to lie within [0,1] and lower values at cyclone centres
correpond to deeper cyclones. Fewer cyclones are reported for low
isovalues. The number of cyclones increases with increasing isovalues.
The increase is rapid due to noise or presence of weak depressions.
The number of cyclones eventually decreases. We select the knee of
the curve, 0.45, as the threshold.

3.2 Window length

A good choice of window length w helps eliminate temporal
noise. We set w = 9 (10 timesteps) as the default window
length with an aim to capture longer cyclone tracks in our
experiments.

3.3 Clustering threshold

Once the window length is determined, tracks are clus-
tered within each time window. We observed that a simple
distance threshold based clustering method performs well.
The current implementation of the framework uses single
link hierarchical clustering [23]. Each track is represented as
a point in a 2(w + 1)-dimensional space with coordinates
specified by appending the 2D coordinates of cyclone cen-
tres. The distance between two tracks is computed as the
euclidean distance in this 2(w + 1)-dimensional space. The
result of the hierarchical clustering algorithm is represented
as a dendrogram. A clustering threshold helps identify the
appropriate level of the hierarchy in the dendrogram and
hence the clusters. We use the cophenetic distance as the
clustering threshold [24], [25]. For a given window length w,
the clustering threshold is equal to the cophenetic distance
divided by

√
2(w + 1). For clarity, we ignore the term in

the denominator in our discussion. The cophenetic distance
between two tracks is defined as the height of the dendro-
gram at which the tracks merge into a single cluster. We
report two tracks as belonging to the same cluster if their
cophenetic distance is smaller than the clustering threshold.

Figure 10 shows a plot of the number of tracks reported
for different values of clustering threshold. Multiple tracks
are detected for small distance thresholds. We observe an
initial steep decrease in the number of tracks because the
proximal raw tracks that correspond to a single cyclone
are clustered together. Further increase in the threshold
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(a) (b) (c)

Fig. 8. Analyzing the effect of choosing extreme values for isovalue threshold on the raw tracks. Tracks are computed over the Australian bay
area during May 1994. (a) Raw tracks obtained using an isovalue threshold of 0.3. Only deep cyclone centres and a small number of raw tracks
are identified for low thresholds values. (b) Raw tracks obtained for the reference isovalue threshold of 0.45, which was selected using the plot in
Figure 7. This threshold captures most of the cyclonic activities in the region. (c) Isovalue threshold of 0.60 gives rise to large isocontours resulting
in longer raw tracks. Multiple cyclone centres combine into a few large isocontours thereby reducing the number of cyclonic regions and raw tracks.
The cyclone motion graph changes significantly with large changes in isovalue threshold.

(a) (b) (c) (d)

Fig. 9. Analyzing the effect of small changes to isovalue threshold on the representative tracks computed over the Australian Bay area during May
1994. The clustering threshold is kept constant at 44. (a) The representative tracks (red + purple) computed using an isovalue threshold of 0.45.
Purple sections of the tracks correspond to the symmetric set difference between the tracks obtained using isovalue thresholds 0.45 and 0.445.
(b,c,d) Symmetric set difference of representative tracks obtained using isovalue threshold of 0.45 against thresholds 0.447, 0.453, and 0.455.
Minor variations in the isovalue threshold may affect the genesis and lysis of the cyclone track reported by the algorithm. However, a significant
fraction of the track remains unaffected.

bring spatially remote raw tracks together. We expect the
raw tracks corresponding to different cyclones to be well
separated in space-time. In all experiments, we observe
a similar steep decrease in the graph plot followed by a
relatively flat section. We set the clustering threshold equal
to the knee of the curve, which effectively separates spatially
remote tracks.

The plot is similar for other time steps as well. So,
we set a uniform clustering threshold of 44 when w = 9
(54 hours, 10 timesteps). The knee of the curve, and the
relatively stable number of cyclone tracks identified above
this value, probably reflect the fact that cyclones tend to
have an effective radius of around 650-700 km [26]. The
steep decrease below the knee of the curve suggests that
multiple tracks belonging to a single cyclone (i.e, within
700 km of the cyclone center) are getting clustered into one
track. Above the knee of the curve, tracks from different
cyclones might be clustered. However, since cyclones are
usually separated in both space and time, clustering is no
longer as effective, and the number of cyclone tracks tends

to stabilise.

Sensitivity: We study the sensitivity of the results to the
choice of clustering threshold by comparing the representa-
tive tracks. The isovalue threshold and window length pa-
rameters are fixed. First, we study the behaviour at extreme
values. Figure 11 shows a representative track computed
for varying clustering thresholds. The tracks for the extreme
values of 20 and 60 have minor to significant differences
from the one computed using the chosen threshold of 44.
The tracks in Figure 11(a) contain a small split before lysis
and hence result in two representative tracks that differ only
at the lysis. Remote tracks are clustered together when the
clustering threshold is increased to 60, again resulting in
multiple representative tracks that are significantly different
from each other. Next, we study the behaviour for neigh-
boring values in the range [40,50]. We observe that the same
representative track is obtained for all values in this range.
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TABLE 1
Effect of the choice of isovalue threshold (relative vorticity) on cyclone tracks that are identified. A track, raw or representative, is a sequence of
cyclone centres connected by edges. The number of edges in the tracks are significantly lower for extreme values of the isovalue threshold. A

threshold of 0.45 is set as reference value. The symmetric set difference between tracks obtained for the reference value and extreme isovalues is
large as expected. Cardinality of the symmetric difference is low for values in the neighborhood of 0.45 implying that a majority of tracks are

captured by both isovalues.

Analysis Isovalue
Raw tracks Representative tracks

Total number of edges Symmetric difference Total number of edges Symmetric difference
(Reference: 0.45) (Reference: 0.45)

Extreme
Values

0.2 60 5464 0 2121
0.3 414 5292 51 2138
0.45 5516 0 2121 0
0.5 21549 21347 7234 8111
0.6 442 5842 355 2386

Sensitivity

0.440 4627 2157 1759 1468
0.445 5038 1288 1957 864
0.447 5215 857 2020 563
0.450 5516 0 2121 0
0.453 5901 887 2253 688
0.455 6146 1486 2369 998
0.460 6879 2913 2531 1696

Fig. 10. Plot of number of tracks computed from relative vorticity during
May 1-30, 1994 for varying clustering threshold values. Each path in
the cyclone track graph corresponds to a distinct track. Large number
of tracks are detected for small clustering thresholds. As the threshold
increases, tracks merge together. When the threshold increases further,
remote tracks are clustered together. A clustering threshold of 44 at the
knee of the curve is selected.

4 EXPLORATORY FRAMEWORK

Interactive study of cyclones within a region of interest
requires an exploratory framework. The join/split tree,
cyclone motion graph, and cyclone track graph are data
structures that form the basis of this framework. The user
is typically presented with all cyclone tracks within a single
time step. The user may choose to visualize individual
cyclone tracks via a query interface. The cyclonic regions
can be optionally displayed over the track to understand the
cyclone movement. All queries are transformed into simple
path traversals within the corresponding graph and hence
efficiently processed. The tracks are overlaid on a 1:50m
raster map of the earth provided by Natural Earth [27],
which contains shaded relief and water and coloring based
on land cover.

4.1 Visualization of cyclonic regions
The framework supports the study of the spatial extent
of cyclonic regions within a time step. The isovalue cor-
responding to the boundary of the cyclonic region may
be tuned to explore the distribution of MSLP / relative
vorticity in the neighborhood. The cyclonic region may
also be interactively tracked over time. The color of the
cyclonic region indicates splits in the past and future merge
events. Isocontours of the field within a neighborhood of
the cyclone are also displayed. Cyclones often contain mul-
tiple minima/maxima. The isocontours helps the climate
scientist understand the multicentered nature of the cyclone,
its intensity, and spatial extent. The join/split tree enables
efficient extraction of the relevant isocontours components
corresponding to a cyclone centre.

4.2 Visualization of representative tracks
Each representative track is displayed as a B-spline curve.
Optionally, the cyclone centres of the representative track
and the corresponding raw tracks may also be displayed.
This view may help understand any unexpected track ge-
ometry. Vertices of the representative track may also be
located at the weighted average of all cyclone centres at time
t in a cluster instead of the cyclone centre with the deepest
field value. This avoids zig-zag between different raw tracks
and leads to smoother tracks.

5 RESULTS

We performed experiments to study extratropical cyclones
over different periods of time.

5.1 Experimental setup
All experiments were performed on an Intel R© Xeon(R) CPU
E5-2670 v3 @ 2.30GHz x 24. Data is obtained from the
ERA-Interim [19] reanalysis data repository. The scalar field
under consideration is 6 hourly data of relative vorticity or
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Fig. 11. Sensitivity analysis of the clustering threshold. Representative tracks over the Australian bay area during May 1994 computed with constant
isovalue threshold of 0.45. (a) Clustering threshold is set to 20. A small split is visible close to lysis. The two proximal sections of the tracks are not
clustered together. (b) Representative track for clustering threshold equal to 44, as identified from the plot in Figure 10. This track, and its lysis, is
physically more plausible, because large jumps of the cyclone track towards the west are highly unusual since the prevailing winds in this region are
towards the east. Varying the clustering threshold between 40-50 has no effect on the representative track. This indicates stability of the selected
clustering threshold. (c) Increasing the clustering threshold to 60 resulted in remote tracks being clustered together.

mean sea level pressure. We first preprocess the data by
reprojecting it onto an equal area grid and then normalizing
the values to lie within [0,1]. This corrects for bias due to the
larger area of a latitude-longitude grid cell near the equator
as compared to one near the pole [6]. Next, we employ the
workflow described in Figure 1. The exploratory framework
only loads data pertaining to cyclone centres from the
current time step. This process is quick and also reduces
the memory footprint. However, all tracks are stored in a
single file and loaded initially for visualization. For a 1-
month long data set, the preprocessing takes approximately
35 seconds, the optical flow computation takes 2 seconds,
and the motion graph and track graph computation takes
40-50 seconds.

5.2 Cyclone centre density
Since extratropical cyclones are the main mechanism by
which the climate system transports heat from the edge
of the tropical regions to the poles, understanding the
geographical variability of cyclone activity provides some
insight into the “hotspots” of energy transfer. Since these
hotspots can be also calculated by alternate means (by
calculating the eddy kinetic energy, for example), such a
calculation also provides a means to verify the performance
of the tracking algorithm.

We compute the cyclone centre density, defined as the
number of cyclones centres at a given grid location over
100 time steps. The cyclone centre density distribution over
the northern and southern hemisphere for the period 1979-
2012 is shown in Figure 12. The cyclone centre density is
calculated over a grid for an isovalue threshold of 0.45
for southern hemisphere and 0.55 for northern hemisphere.
For each identified cyclone centre, we increment the count
of cyclones for all grid cells that lie within a 1000 km2

box neighborhood and normalize by the number of time
steps. The cyclone centre density captures the major centres
of cyclone activity (or storm tracks) in both hemispheres.
The heatmap corresponds well to the density computed

using other algorithms [9], see supplementary material for
heatmaps from the earlier study. Changing the isovalue
threshold from 0.45 to 0.4 for southern hemisphere does
not change the overall statistical picture, which suggests
that an isovalue in this range would be suitable for scien-
tific applications. Moreover, we use all cyclones identified
without filtering based on area or lifetime (as opposed to
the IMILAST results which only use cyclones that live for
longer than 24 hours).

5.3 Temporal variability

Extratropical cyclones are formed mainly in the winter in
each hemisphere, and the total number of cyclones formed
per season is sensitive to the state of the climate system
in that season. For example, cyclone activity is known
to be sensitive to the North Atlantic Oscillation and the
Pacific North American mode of variability [28]. Therefore,
the intrinsic inter-annual and inter-decadal variability of
cyclones must first be accounted for before any attempt to
understand the impacts of anthropogenic climate change on
cyclones.

While a complete characterisation of cyclone statistics is
out of the scope of this paper, we present results for the
cyclone counts per season obtained by the algorithm in Fig-
ures 13 and 14. The inter-annual variability of cyclone center
counts in Figure 13 remains quite similar regardless of the
isovalue chosen, which implies that the largest variability is
due to changes in the deepest cyclones (which are captured
by all thresholds). Thus, natural climate variability seems to
influence the genesis of deep cyclones more than shallow
cyclones. This inference is inline with the picture presented
in the IMILAST comparison as well. Figure 14 shows the
total number of cyclones identified per year in the northern
hemisphere. The number of cyclones is approximately 120
on average, which is half the number identified by Gulev
et al. [28]. This suggests that the current implementation
captures deeper cyclones more effectively than weaker ones.
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Fig. 12. Heatmap of cyclone centre density in the winter season for northern (left) and southern hemispheres (right) during 1979-2012. The cyclone
centres are identified using relative vorticity.

Fig. 13. Number of cyclone centers identified per boreal winter season
(December-February) in the northern hemisphere for different isovalues
of mean sea level pressure from 1979 to 2009.

5.4 IMILAST case studies

IMILAST [9] was a community effort for the intercompar-
ison of extratropical cyclone tracking algorithms, directed
at studying the differences between various tracking al-
gorithms available and the reason for these differences.
For purposes of comparison, IMILAST selected two high
impact winter cyclones which were previously analysed
in the literature and were characterised by complicated
life cycle characteristics such as cyclone splitting and re-
intensification. They were chosen in different hemispheres
to test the tracking algorithm’s sensitivity to a change in
hemisphere. The detailed synoptic situation and impacts of
the two cyclones are described in [9] and references therein.

Fig. 14. Number of cyclones per year in the northern hemisphere for the
period 1979 to 2009. The mean sea level pressure isovalue threshold is
0.45.

5.4.1 IMILAST storm 1: 22-29 May 1994

The first case study is an unnamed cyclone that occurred
to the south of Australia during the austral winter in 1994.
Cyclones are identified using an isovalue threshold of 0.45
and other parameter set to default values. The path traced
by different tracking algorithms in the IMILAST comparison
is shown in Figure 15. The IMILAST study suggests that
there was a large disagreement between the methods. Some
tracks follow a path towards New Zealand while others turn
to the south depending on the sensitivity of the algorithm
towards handling of the splitting of the cyclone. Our method
is able to capture the southern track as well as the extension
of the track towards New Zealand. We do not explicitly
show the split in the track because it is small in length
and gets clustered into a single track. The evolution of
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Fig. 15. A track obtained near the Australian Bight due to a southern hemisphere storm (22-29 May, 1994). (a) A representative track obtained
using our framework. (b) Comparison with tracks obtained from different algorithms reported in the IMILAST study [9]. The track obtained using our
framework is shown in blue. The slight upward shift in the track is due to difference in the resolution of the data used. Most tracks either capture
eastward or southward movement of the cyclone, not both. (c) Core pressure evolution over the representative track (blue) is similar to the results
from IMILAST.

the minimum pressure over the life cycle of the cyclone
is shown in Figure 15(c). The evolution captured by our
algorithm is again similar to earlier algorithms. In particular,
the re-intensification of the cyclone on May 26 is captured.

5.4.2 IMILAST storm 2: 22-27 Jan 2009
The next case study is of the cyclone Klaus that originated
in the Atlantic and traced a path through the Mediterranean
region. It affected northern Spain and southwestern France
between 22-27 January, 2009. Maxima of relative vorticity
are computed to locate the cyclone centres, with an isovalue
threshold of 0.59. The isovalue threshold is used to identify
subtrees of the split tree. As shown in Figure 16, we compare
the representative track obtained from the framework with
the tracks reported in the IMILAST study. The genesis of the
cyclone is captured by the representative spline track. The
representative track is not able to capture the lysis of the
cyclone to the east of Italy. We note that earlier algorithms
that track cyclones using relative vorticity as an input also
fail to capture lysis of the cyclone. The evolution of the
minimum pressure over the life cycle of cyclone Klaus is
shown in Figure 16(c). The life cycle of the cyclone as
computed by our algorithm is similar to the results from
other algorithms described in the IMILAST study.

5.5 North Atlantic multicentred cyclone
Tracking of cyclones with multiple centres has always been a
challenge. Most algorithms consider cyclones with multiple
centres as two separate cyclones, leading to double counting
and erroneous tracks. This case study illustrates the capa-
bility of the proposed algorithm and framework to track
multicentre cyclones. This particular case study was used
by Hanley and Caballero [8] to illustrate their track surgery
algorithm and contrast it with algorithms that are unable
to distinguish between single and multicentre cyclones.
Figures in the supplementary material are from their com-
parative study, which show that naı̈ve approaches that track
individual depressions will generate two separate tracks,
one for each cyclone minimum, and not a single longer
multicentred cyclone track. Their track surgery operation

computes a single track where the cyclonic region at each
time step contains mutiple centres. Our framework reports
similar results without resorting to the detailed case analysis
required by the track surgery operation. Figure 17 shows the
single representative track obtained by our framework using
an isovalue threshold equal to 0.56 and w = 9 (10 timesteps).
A visual comparison shows that the result is similar to that
of Hanley and Caballero.

5.6 Recent cyclone activity: December 2011
December 2011 was marked by multiple high impact winter
storms affecting Europe in succession: cyclones Friedhelm
(December 7-12) and Joachim (December 15-21) as shown in
Figure 18. Due to the fact that these cyclones overlapped in
space and time, this period was chosen to test the robustness
of the tracking algorithm to a complex and dynamic situa-
tion. For this case study, we use the mean sea level pressure
instead of the vorticity field to track the cyclones. Such an
option is not easily available in current tracking algorithms.
The generated tracks were compared with weather charts
archived at the Institute of Meteorology, FU Berlin [29]. In
the case of cyclone Friedhelm, the algorithm captures the life
cycle well, apart from the lysis on December 12, when the
sea level pressure signature was relatively weak. This is also
the case for cyclone Joachim, with the final day of the life
cycle being missed. Upon inspection of the weather charts,
the reason for both appears to be that the cyclone centre is a
low pressure relative to its environment, but not in a global
sense. This suggests that using a preprocessing step (such as
subtraction of a running mean value) to enhance the cyclone
signature or using regional isovalue thresholds might help
enhance the ability of the algorithm to capture the full life
cycle of the cyclone.

6 CONCLUSIONS

The identification and tracking of extratropical cyclones
remains an operational challenge for meteorologists due to
their varied sizes, strengths, and lifecycle characteristics. In
this paper, we have provided an exploratory framework that
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Fig. 16. A track obtained due to storm Klaus in the northern hemisphere (22-27 January, 2009). (a) A representative track obtained using our
framework. (b) Comparison with tracks obtained from different algorithms reported in the IMILAST study [9]. The blue track obtained using our
framework traces a similar path as others. (c) Core pressure evolution over the representative track (blue) is similar to the results from IMILAST.

facilitates identification of cyclones and generates simplified
smooth tracks. Our method is generic and requires only a
few parameters to be tuned. This allows the use of different
scalar fields such as vorticity and sea level pressure for
tracking cyclones, a flexibility that is not present in existing
methods. We have demonstrated the use of topological
methods in simplifying and storing only the important fea-
tures of the scalar field. Next, we employ clustering of tracks
within a fixed time window, which has multiple benefits.
It removes temporal noise, identifies redundant tracks, and
also merge / split behavior. This approach contrasts with
currently used tracking methods that typically use only two
time steps, the current and previous ones, to obtain the
cyclone tracks. Query based exploratory methods help the
user to select and obtain detailed visualization of interesting
features.

While the exploratory framework is useful for study-
ing individual cyclones, there are multiple directions for
future work. Our current tracking implementation uses a
latitude-longitude map projection. This projection increases
the area of identified cyclonic regions close to the poles.
Further work is required to systematically remove such
bias. The algorithm may be further improved to obtain
correct density distributions over the polar regions by using
physically motivated filtering methods. Incorporating these
improvements without introducing additional parameters
is a challenge. The query based framework is interactive for
time periods of 1-2 months. Improved data structures are
required for query processing to scale to data that spans
multiple years.
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Fig. 17. Tracking a multicentred north Atlantic cyclone (Dec 2008). (a) A single representative track produced by our framework. (b) Red track
computed using a specialized track surgery method for tracking multicentred cyclones [8]. The blue track obtained using our framwork is similar to
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Fig. 18. Tracks obtained for cyclone Friedhelm (a) and cyclone Joachim (b) in December 2011 using mean sea level pressure data. An isovalue
threshold of 0.37 was uniformly used in both cases.
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