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Abstract
Moment invariants have proven to be a useful tool for the detection of patterns in scalar and vector fields. By their
means, an interesting feature can be detected in a data set independent of its exact orientation, position, and scale.
In this paper, we show that they can also be applied to explore an unknown dataset without prior determination
of a query feature pattern it may possibly contain. The clustering of the high dimensional moment space reveals
the major structures in the underlying flow field and gives an excellent overview for subsequent more profound
exploration.

Categories and Subject Descriptors (according to ACM CCS): Image Processing and Computer Vision [I.4.7]: Fea-
ture Measurement —Moments;

1. Introduction

Scientific data arising from simulations in several science
and engineering disciplines are often represented as vec-
tor fields. Ever increasing complexity of these vector fields
necessitates the development of new methods for flow vi-
sualization and exploration. Direct visualization and explo-
ration are no longer sufficient for data understanding due
to the presence of visual clutter. Several researchers have
advocated feature-directed approaches to address this chal-
lenge [CEH∗09, NMM09]. Such approaches are effective in
the context of flow visualization because the study of flow
features is central to the knowledge discovery process. In
the absence of a precise definition of a feature, query- or
example-based exploration methods address the problem by
supporting the specification of an exemplar feature followed
by automatic identification of similar features or patterns
within the field [BAAK∗13, LCL∗13, TN14, WWYM10].
The successful use of the method crucially depends on the
user’s ability to pose appropriate queries.

In this paper, we study the problem of automatic iden-
tification of exemplar features within an input vector field.
Specifically, we propose a clustering based method to iden-
tify different types of repeating patterns both in steady and
unsteady vector fields. We identify similarity within a flow
field by applying a clustering algorithm to its moment in-

variants. That way similar regions of the field can be found
without any regard to differing background flow, velocity, or
orientation.

In a nutshell, the algorithm works as follows.

1. We calculate the moment invariants for every point.
2. We cluster these normalized moment vectors.
3. Color each point in correspondence with the cluster of its

moments.

2. Related work

The use of moment invariants in pattern recognition started
when Hu [Hu62] introduced his famous seven moment in-
variants in 1962. Complex moments [Tea80, AMP84] espe-
cially simplified the construction of rotational invariants be-
cause of the easy way to describe rotations using complex
exponentials. Two principle approaches for the construction
of an independent basis of moment invariants have been in-
troduced. Dirilton and Newman [DN77] use normalization,
Flusser [Flu00] explicitly defines the set of invariants. The
step from scalar to vector valued data took some time. Build-
ing on Flusser’s work, Schlemmer et al. [SHM∗07, Sch11]
have defined the first moment invariants for flow fields. Fol-
lowing the normalization approach Bujack et al. [BHSH14a]
have presented a concise mathematical framework for the
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construction of a complete and independent set of moment
invariants for flow fields that is adaptable to vanishing mo-
ments. Both approaches have successfully been applied to
flow pattern recognition tasks. For a more comprehensive
introduction to moment invariants we recommend [FZS09].

Clustering algorithms have been applied to vector fields
albeit for partitioning the field. Several distance measures
have been proposed for comparing streamlines and other
similar structures [TvW99, GPR∗00, MVvW05, KNC∗14].
Since these approaches are local and not invariant with re-
spect to orientation, certain features, like vortices, are sepa-
rated into many different clusters because the vectors in them
point into very different directions. In contrast to that, our al-
gorithm keeps the whole vortex in one cluster, which is more
intuitive.

3. Moment Invariants for Flow Fields

In [BHSH14a], Bujack et al. constructed moment invariants
for two-dimensional flow fields using complex moments and
normalization. In this section, we will summarize the most
important facts.

The moments of a function are its projections with respect
to a function space basis. We handle functions with compact
support over R2 ' C and use complex moments

cp,q =
∫
C

zpzq f (z)dz, (1)

which are the projections to the standard complex monomi-
als zpzq. Calculated up to a given order p+q = n ∈ N, they
form a feature vector c = (c0,0, ...,c0,n)

T ∈ C(n+1)(n+2)/2 in
a high dimensional feature space. The coordinates in this
space describe the function. That means functions can be
compared using the distance in the moment space.

The user is free to choose any combination of the fol-
lowing flow field transformations with respect to which he
wants the moments to be invariant. The Outer Translation
by t ∈ C, f ′(z) = f (z) + t, can be interpreted as a distor-
tion of the pattern by some background flow or as a moving
frame of reference. The Outer Scaling by the factor s∈R+,
f ′(z) = s f (z), changes the velocity of the flow. The Total
Rotation by α ∈ [−π,π) adequately describes the behav-
ior of a flow field when its orientation is changed, f ′(z) =
eiα f (e−iα z). The Total Reflection is closely related to total
rotation. An arbitrary reflection can be produced from two
total rotations and a total reflection along the real axis. Since
we cover the rotation separately, it is sufficient to consider
the total reflection along the real axis, f ′(z) =

(
f (z)

)
.

Moment invariants can be constructed from moments via
normalization, which works as follows. In order to achieve
an invariant description of a field, a standard position is de-
fined and the field is transformed into this standard position.
An illustration of the normalization process of an example
flow field is shown in Figure 1. Please note that the fig-
ures are for illustrative purpose only. In the implementation,

the function itself is not put into standard position, but only
its moments. Certain moments are set to predefined values.
They will take the same values for any field. All the remain-
ing moments can be used as independent discriminators.

The example. Background. Velocity. Rotation.

Figure 1: Normalization example, color represents speed.

Suppose the complex function f : C→C with support on
the circular area A = Br(0) is transformed by outer scaling
by s ∈ R+, outer translation by t ∈ C, and total rotation by
α ∈ [−π,π) and let

f ′(z) =seiα
(

f
(
e−iα z

)
+ t
)
. (2)

Then, the complex moments c′p,q of f ′ satisfy

c′p,q = seiα(p−q+1)(cp,q + t
∫

A
zpzq dz

)
. (3)

Under total reflection, the moments are complex conjugated.
For indices p0,q0 ∈ N with cp0,q0 6= 0, we can calculate the
transformation parameters that put the function in the stan-
dard position defined by c0,0 = 0,cp0,q0 = 1. They suffice

t0 =−
c0,0∫
A dz

,s0 =
1

|cp0,q0 |
,α

j
0 =

2 jπ− arg(cp0,q0)

p0−q0 +1
, (4)

with j = 1, ..., |p0−q0 +1| and transform the moments into
moment invariants using (3). A detailed description of the
procedure can be found in [BHSH14b].

4. Adaption of the Normalization

The idea of clustering the moment feature space presents
new challenges for the normalization.

In order to solve the pattern detection task, Bujack et
al. [BHSH14b] used the moment with highest magnitude
in the pattern as the normalizer cp0,q0 . Since we do not
have a pattern that suggests the normalizing moment, we
choose the dominant moment throughout the whole field
p0,q0 = argmaxp+q<n(∑z∈C cp,q(z)2). Even though this one
is the best choice, the original normalization process will
lead to problems at the positions where this moment van-
ishes.

First, normalization with respect to scaling causes huge
entries, which pull the centroids of the clusters far away
from the reasonable areas in the feature space. We solved
this problem by normalizing the whole moment vector in
the feature space to have unit Euclidean length c′p,q =

cp,q/
√

∑p+q<n cp,q(z)2, if it was not numerically zero in the
first place.
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Second, normalization with respect to rotation relies on
the argument of cp0,q0 , which is unstable for vanishing
magnitude. This problem is taken care of using a stabi-
lizer that weighs the overall length of the moment vec-
tor with the magnitude of the normalizing moment c′p,q =

c′p,q
√

1− (1−|c′p0,q0
|)2 allowing a smooth transition when

it passes through zero. This strategy will equalize the po-
sitions of a vanishing normalizer. An alternative that main-
tains a discrimination in these areas is to extend the moment
vector by the normalized moments with respect to different
normalizers.

5. Clustering

The normalized moment vectors live in the high dimensional
unit sphere in the feature space. They tend to accumulate
along the coordinate axes, especially for smaller radii, which
emphasize lower order moments. The principle component
analysis (PCA) of the feature space reveals that principle
axes are often correlated to coordinate axes. An illustration
of the PCA of the feature space of our case study from Sec-
tion 6 can be found in Figure 2.

Radius is one. Radius is two.

Figure 2: PCA of the feature space of the vortex street from
Figure 3, color represents the cluster affiliation for k = 4.

To perform the clustering in the feature space, we choose
the well known k-means algorithm [Mac67]. For a given
number k ∈ N, it works as follows. Initially, k cluster cen-
troids are randomly placed in the data set. Then iteratively,
two steps are performed until the cluster formation does no
longer change.

1. Each point is assigned to its closest cluster centroid.
2. The new centroids are the mean of all assigned points.

We use k-means because it is fast, partitions the feature space
into clusters of similar diameter, and does not take varying
density into account. This is useful in our application be-
cause the further two points are away from each other in
the feature space, the more their respective vector field pat-
terns differ in shape. In contrast to that, the density does not
resemble any similarity or dissimilarity of the patterns, but
only represents how frequently this pattern appears through-
out the data set. Therefore, a decomposition into evenly dis-
tributed, equally sized clusters represents a good partitioning
with respect to the similarity of the patterns.

One issue of k-means is the distribution of the initial clus-
ter centroids because it influences the number of iterations
and the outcome of the algorithm. We place the first centroid
into the point representing the normalizing moment and keep
adding the data points with the largest distance to all previ-
ously selected centroids, similar to k-means++. That guaran-
tees an even and deterministic initial distribution, which is in
accordance with the nature of the feature space and k-means
itself.

When it comes to the distance measure, we have to be
careful. The number of equally valid standard positions in
the normalization process depends on the rotational symme-
try of the normalizer. To treat that, we equip k-means with
the metric

dist(c,c′) = min
j=1,...,2|p0−q0+1|

√
∑

p+q≤n
(c j

p,q− c′ jp,q)2 (5)

introduced in [BHSH14a]. The coloring in the right of Fig-
ure 2 illustrates how the purple (or yellow) cluster actually
combines the moment vectors that only differ because they
were mapped to different but equivalent standard positions
during normalization.

6. Case Study

In order to demonstrate the outcome of our algorithm, we use
a 2D computational fluid dynamic simulation of a von Kár-
mán vortex street shown in Figure 3. We visualize the alloca-
tion of the regions in the field to the clusters by dyeing each
point in the color assigned to its cluster. We use a rainbow
color map with constant intensity and brightness. It guaran-
tees a maximal variety of hues and prevents the emphasis of
certain clusters that are randomly assigned a color of higher
intensity. It further gives us the opportunity to visualize the
immediate behavior of the field with removed mean flow us-
ing line integral convolution (LIC) encoded in the brightness
of the colors.

Figure 3: The case study is a von Kármán vortex street. The
color map represents the speed of the flow.

The method has some degrees of freedom and we will
briefly discuss their influence to the result of the clustering.

The greatest influence on the resulting image is the chosen
number of clusters k. The result of the clustering for maximal
order n = 2, integration radius r = 1, and varying k can be
found in Figure 4. The repeating structures of the von Kár-
mán vortex street are perfectly represented by the clustering
for any k. Further, the clustering by the moments is able to
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discriminate flow behavior that is not possible by judging the
LIC image. For example, the difference between the orien-
tation of the vortices or the separation of the pink and the
purple clusters in the image with k = 6. The flow looks sim-
ilar on first sight, but indeed there is no rotation that can
identify the two. They differ by a reflection, with respect to
which we did not choose to normalize in this example.

k = 3

k = 4

k = 5

k = 6

Figure 4: Influence of k on the clustering. Radius r = 1.

The second biggest influence on the output of the algo-
rithm is the radius of the integration area r ∈ R. This is the
scale of the patterns that are compared. Larger integration
areas increase the influence of the higher order moments.
While the clustering is dominated by the vortices with radius
one, the main impact for radius two is made by the monkey
saddles. That leads to a stronger decomposition of the area
above and below the vortices in Figure 5. The size of the
features a user is interested in will vary strongly from appli-
cation to application. Our algorithm permits the user to clus-
ter all scales simultaneously in one feature space. That way,
patterns that occur on different scales are comprehended into
the same cluster and colored in the same color throughout all
scales. The user can browse through the different scales and
follow the development of the clusters. An example of that
is shown the supplementary video.

Figure 5: Influence of the radius, r = 2,k = 4.

The normalization with respect to translation results in

Lagrangian invariance also in time-dependent vector fields.
Our von Kármán vortex street is a time-dependent data set.
It consists of 32 time slices that periodically form a contin-
uous flow. Our algorithm is capable of comprehending the
moments of each time slice into one big feature space. The
result is a coherent clustering for time dependent data. The
same patterns are assigned the same color independent of the
time slice they are in. Please find the result in the video in the
supplementary material. The feature space and the resulting
clustering also depend on the maximal chosen moment order
n ∈ N and the number of time steps and scales included into
the feature space. For the figures in this section, we used the
moments of only one time step and one scale. For the video,
we included all time steps and many scales r = 0.5,0.6, ...,2
respectively. The maximal moment order is always n = 2.

Velocity field. k = 3. k = 7. Different FOR.

Figure 6: The swirling jet and its clustering.

We also study the results of applying the clustering algo-
rithm on a different data set. The flow field in Figure 6 is
the result of the simulation of a fast stream entering a liquid
at rest. The dominant features are the vortices. We consider
especially interesting how the patterns that show a strongly
curved behavior but no vortex cores are allocated to the clus-
ters of the vortices, too. The reason is that they are vortices
in a different frame of reference, as can be seen in the right
image. The moments are Galilean invariant and therefore re-
veal what a Lagrangian view would reveal.

7. Conclusion

In this paper, we presented a method to segment a vector
field by clustering the moment invariants of the field. The
moment invariants represent the field in a high dimensional
feature space that transfers similar flow patterns into mea-
surable spatial relations. Using normalization, similar flow
structures can be elaborated even though they differ in ve-
locity, frame of reference, or orientation. That way, we were
able to extract flow features in a vector field without any pre-
defined description in an automatic fashion.

The main drawback of the method is the great number of
degrees of freedom. Initialization, integration radius, maxi-
mal order, and treatment of the case of a vanishing normal-
izer change the outcome of the method. In future work, we
will investigate these parameters in more detail, compare dif-
ferent clustering algorithms, and approach 3D flow fields.
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