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ABSTRACT

Study of cavities and channels in molecular structure is a crucial
step in understanding the function of biomolecules. Current tools
and techniques for extracting these structural features are sensitive
to uncertainties in atomic position and radii. In this paper, we study
the problem of cavity extraction in biomolecules while taking into
account such uncertainties. We propose an approach that connects
user-specified cavities by computing an optimal conduit within the
region occupied by the molecule. The conduit is computed using
a topological representation of the occupied and empty regions and
is guaranteed to satisfy well defined geometric optimality criteria.
Visualization of the set of all cavities with multiple linked views
serves as a useful interface for interactive extraction of stable cavi-
ties. We demonstrate the utility of the proposed method in success-
fully identifying biologically significant pathways between molec-
ular cavities using several case studies.

Index Terms: G.2.2 [Discrete Mathematics]: Graph Theory; I.3.5
[Computer Graphics]: Computational Geometry and Object Mod-
eling; J.3 [Life and Medical Sciences]: Biology and genetics

1 INTRODUCTION

Proteins are the fundamental functional blocks of a biological sys-
tem. Structural features of the protein are known to play a key
role in determining the stability and function of proteins [25]. One
important structural feature of protein is the set of cavities within
it. Cavities are empty spaces within the protein. Cavities may have
openings or be completely buried, and are referred to as pockets and
voids, respectively. Pockets often correspond to the active site of
enzymes or interacting sites for other proteins. Voids, on the other
hand, are important structural features that affect the overall ther-
modynamic stability of the protein [14]. Filling up internal voids
improves the packing of the protein thus increasing stability [12].
Given the importance of cavities in protein structure study, several
algorithms and software are available to compute them given pro-
tein structure data, such as from the Protein Data Bank.

Protein structures are commonly determined from X-ray crys-
tallography data. Inaccuracies, noise, and more generally, uncer-
tainty in the data adversely affects existing cavity detection meth-
ods. Small inaccuracies may already cause a difference in the re-
ported number of cavities. The atom radii are also empirically de-
termined and hence not precisely defined values. Figure 1 shows
a transmembrane protein where a cavity detection method would
typically report multiple disconnected components. In many such
scenarios, it is clear that a single connected cavity is the desired
result. We study the problem of improved cavity extraction and de-
scribe a method that takes into consideration the uncertainty in the
data. In particular, we present an integrated geometric and topo-
logical approach to connect cavities that are reported by an existing
method. This approach combines the benefits of geometric mea-
sures to quantify the perturbation that is employed to connect the
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cavities and an efficient data structure for representing the connec-
tivity of the empty space within the protein.

Figure 1: Left: The transmembrane channel through the protein
2OAR is detected as disconnected cavities. The default parameters
are used to compute the cavities. Right: However, it can be con-
nected by perturbing a few atoms around its bottleneck.

Numerous methods have been proposed for identification of cav-
ities in protein molecules. These methods employ a wide variety of
approaches – grid and occupancy based, graph based, model fit-
ting, Monte Carlo simulations on solvent molecules, and Voronoi
diagram based. Early tools used grid-based approaches to extract
cavities [11, 15]. These methods discretized the space occupied
by the protein thereby trading off accuracy in favor of computa-
tional efficiency. The notion of cavities and their classification as
voids and pockets was more formally defined using the alpha shape
model of a molecule proposed by Edelsbrunner et al. [9, 10] and
Liang et al. [16, 17]. This enabled accurate identification of cav-
ities and further supported the computation of geometric proper-
ties like volumes and surface areas. Tools based on the above ap-
proach are available and widely used [6, 13]. Graph based meth-
ods have also been used to identify cavities and compute their vol-
umes [22, 27]. Given an estimate of the empty space, Varadara-
jan et al. describe a Monte Carlo procedure to position water
molecules within to improve the accuracy of the extracted cav-
ity [4]. Several recent methods are based on the Voronoi diagram
of the atoms [18, 19, 20, 23, 24].

The above mentioned methods do not explicitly handle the ad-
verse effects of uncertainty in the data. Some methods support user-
specified parameters such as solvent radius or a growth factor but
they are almost always global parameters that affect all extracted
cavities. Sridharamurthy et al. [26] address the problem of uncer-
tainty explicitly and propose a two-parameter solution that extracts
so-called robust cavities. However, their solution is also global in
the sense that the parameters affect all extracted cavities. Such a so-
lution may produce undesirable results by connecting cavities that
lie outside the region of interest. We propose a simple and direct
approach to address the problem, where the user examines the cav-
ities and identifies artifacts or undesirable disconnections. The user
interacts with the multiple linked views provided by the visualiza-
tion and specifies a pair of cavities to be connected. Our cavity
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Figure 2: (a) Power diagram of a weighted point set in R2, power edges and vertices are shown in green. (b) The weighted Delaunay com-
plex (black edges) is the dual of the power diagram. (c) The α-complex Kα for α = 0 is shown in red. This is the dual of the intersection of power
diagram and union of balls. Kα forms the occupied region (OR) of the molecule. (d) The empty region (ER) in green. This region is defined by
Delaunay flow. The green triangles do not belong to OR and have flow towards a triangle within the molecule. The set of simplices in OR and ER
form the molecular region (MR). (e) ER consists of two maximally connected components, called cavities, shown in blue and yellow.

connection algorithm efficiently and automatically computes an op-
timal conduit between the cavities. Key contributions of this paper
include:

• A simple, explicit, and flexible method for extracting cavities
in biomolecules from uncertain data with guaranteed bounds
on the perturbation required.

• Efficient algorithms to compute a conduit between user se-
lected cavities that satisfies well defined optimality criteria.

• Interactive visualization of cavities in a molecule with multi-
ple linked views that facilitates identification of disconnected
cavities.

• Three case studies that demonstrate the benefits of the cavity
connection based method — computing ion transport chan-
nels from uncertain data, comparing cavities obtained from
various mutants of a protein, and computing the migration
path of carbon monoxide in myoglobin.

We evaluate the method by comparing the results with those ob-
tained using a global parameter-driven cavity extraction method.
We also note that our method may be used in conjunction with any
of the Voronoi diagram based method to improve the results.

2 BIOMOLECULE REPRESENTATION

We briefly introduce the mathematical background required to de-
fine and represent the structure of biomolecules [7, 8]. Protein
molecules are often modeled as union of balls. The molecule M
is defined as the set {ai = (pi,ri)}. Here ai denotes a constituent
atom of M modeled as a sphere with center at pi and radius ri.

Voronoi diagram and Delaunay triangulation
For a given set of weighted points, weighted Delaunay triangulation
D is the triangulation of the input points based on proximity defined
by power distance. A point p with weight wp is equivalent to ball
with radius rp =

√wp. The power distance between a weighted
point p and a point x in Euclidean space is given by ‖x− p‖2−wp.
The dual of the weighted Delaunay triangulation is called weighted
Voronoi diagram or power diagram [1]. The power diagram and
the weighted Delaunay triangulation are shown in Figures 2(a) and
2(b), respectively.

Alpha complex
Alpha complex provides a growth model for the input spheres con-
sistent with power distance. The growth parameter α corresponds

to a radius
√

r2
p±α2 for a ball centered at p with radius rp. Posi-

tive values of α correspond to growing the balls and negative values
correspond to shrinking the balls. The weight of the point wp in-
creases or decreases by α between −∞ and ∞. Note that α = 0
corresponds to no growth. The parameter α can be varied from−∞

to ∞ to obtain a filtration of triangles and tetrahedra (also called
simplices) belonging to the weighted Delaunay triangulation. A se-
quence of α-complexes ( /0 = K0 ⊂ K1 ⊂ ·· · ⊂ Km = D) containing
progressively more triangles and tetrahedra is obtained as α is in-
creased from −∞ to ∞. Figure 2(c) shows the α-complex at α = 0
as a subset of D highlighted in red.

Cavities
For a given molecule represented as a set of balls, let D be the
weighted Delaunay triangulation and Kα ⊆ D be the α-complex
for value α . The Delaunay flow over D is defined as the collection
of flows between adjacent tetrahedra in D going from the tetrahe-
dron from smaller circumsphere to the larger one. Let Itet denote
the set of tetrahedra in D whose Delaunay flow terminate within D
and I denote Itet together with the corresponding faces. For a given
α value, we define molecular region MR as Kα ∪ I. The simplices
in MR can be classified into two groups based on whether they be-
long to the α-complex or not. The simplices in OR = Kα constitute
the occupied region in the molecule, while the remaining simplices
ER = MR−OR capture the empty region in the molecule. Refer
to Figure 2(d) for an illustration of ER, OR and MR. In the fig-
ure, the green region is ER while red region is OR. The union of
ER and OR is the molecular region, MR. The cavities are defined
as maximally connected subregions in ER. Let the set of all cavi-
ties be C = {C1,C2, . . . ,Ck}, such that ER =C1∪C2∪·· ·∪Ck and
Ci∩C j = /0. The tetrahedron ti ∈Ci with highest α value is selected
as the representative tetrahedron of Ci.

3 CAVITY CONNECTION

Cavities in a biomolecule, as defined in the previous section, are
clearly sensitive to perturbations in atomic positions and radii. For
example, Figure 1 illustrates a scenario where perturbing a few
atoms results in detection of a single large cavity instead of dis-
connected cavities. Recognizing the existence of such a single con-
nected cavity and extracting it by performing the required perturba-
tion is an interesting and challenging problem. Current approaches
to cavity extraction employ global parameters to address this prob-
lem resulting in undesired merging of multiple cavities. We aim
to develop a flexible user-driven method that can improve the re-
sults of the cavity extraction algorithm by supporting the automatic
computation of an optimal conduit between two given cavities.

3.1 Problem statement
Given two disjoint cavities, the cavity connection problem is the
computation of an optimal conduit between the cavities that (a) lies
within the molecular region and (b) together with the two input cav-
ities forms a single connected cavity after suitable perturbation of
the atoms. We consider three optimality criteria that lead to differ-
ent algorithms for connecting the cavities.

• BOTTLENECK : This is a min-max criterion where the objec-
tive is to minimize the maximum perturbation on an atom that
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Figure 3: Illustration of cavity connection method based on BOTTLENECK criterion using a 2D example. (a) The two cavities which are required
to be connected are shown in the context of the molecule shown as a set of grey disks. The GMR is shown in green. (b) The maximum spanning
tree (MaxST ) is computed for the network. (c) The representative nodes of the two cavities in the MaxST are colored red. (d) The connecting
path detected between these cavities. (e) The only edge of the path which belongs to OR is highlighted in red. The lining atoms of this edge can
be perturbed to physically connect these cavities.

(a) (b) (c) (d) (e)

Figure 4: Demonstration of cavity connection method applied to the protein 2OAR. (a) The two cavities which are required to be connected are
shown in the context of the molecule shown in cartoon representation. (b) The complete dual graph GMR. The edges which belong to OR are
colored red while edges belonging to ER are colored yellow. (c) The MaxST computed for GMR. Same coloring scheme is used to identify edges
in OR and ER. (d) The MaxST is further pruned by restricting to paths connecting the cavity representatives. Here blue spheres show the cavity
representatives. (e) Using cavity connection algorithm, the best path connecting the representative nodes of the two cavities shown in (a) is
computed. The atoms are perturbed appropriately to obtain the merged cavity shown in this figure.

will result in the formation of a conduit between the cavities.

• PROXIMITY : The objective here is to minimize the number
of atoms perturbed to form the conduit.

• BOTTLENECK PROXIMITY : This is a hybrid of the above
criteria. The number of perturbed atoms is minimized given
an upper bound on the maximum perturbation allowed on an
atom.

3.2 Cavity connection methods
We now describe efficient algorithms to connect cavities satisfying
each of the above-mentioned optimality criteria.

BOTTLENECK criterion
The uncertainty in atom locations and radii determined from x-ray
crystallography maps motivate the development of methods that
perturb the values to extract connected cavities. The BOTTLE-
NECK criterion aims to limit this perturbation in the atom radii to
the least possible value.

Consider the dual graph GMR of the tetrahedra and triangles in
MR. Nodes of this dual graph correspond to the tetrahedra and the
arcs correspond to the triangles. A weight is associated with each
arc of GMR, equal to the smallest value of α at which the corre-
sponding triangle is inserted into the filtration. Let Ci and C j be
the two cavities that the user would like to connect. Let ti be a
representative tetrahedron belonging to the cavity Ci and t j be the
representative of C j. Let ni and n j be the nodes in GMR correspond-
ing to ti and t j, respectively. The conduit between Ci and C j may be
represented by an alternating sequence of triangles and tetrahedra
in MR and hence by a path in GMR. In particular, we are interested

in the path between ni and n j where the minimum weight over all
arcs is maximized. We design a simple and efficient algorithm for
computing this optimal path by recognizing that the path always
lies within the maximum spanning tree of GMR.

CLAIM. The maximum spanning tree MaxST of the weighted graph
GMR contains a path satisfying the BOTTLENECK criterion for all
pairs of cavities.

Proof. Consider two nodes ni and n j in GMR. Let Pi j denote an
optimal path between the two nodes and ai j denote the minimum
weight arc within the path. We describe a proof by contradiction.
Let P′i j (6= Pi j) denote the unique path between ni and n j in MaxST
and a′i j denote the minimum weight arc within the path. If the
weights of a′i j and ai j are equal then P′i j is also an optimal path.
If the weight of a′i j is smaller than ai j then we can show that a new
tree may be constructed with weight greater than MaxST resulting
in a contradiction. Delete the arc a′i j from MaxST . This results
in two disconnected trees containing the nodes ni and n j respec-
tively. Let bi j ∈ Pi j be an arc connecting the partitions. Clearly, the
weight of bi j is greater than or equal to the weight of ai j and hence
the weight of a′i j. Replace a′i j with bi j in MaxST to obtain a span-
ning tree with greater weight than MaxST , a contradiction. Hence,
MaxST always contains an optimal path.

The conduit may be computed from the optimal path Pi j by per-
turbing the atoms lining Pi j. The triangles in MR that are dual to
arcs in Pi j belong to OR and ER. We perturb the atoms incident on
triangles in OR. Their radii are reduced by a value corresponding to
the α-value at which the triangle is inserted into the filtration, thus
establishing the connection between the cavities. Figures 3 and 4



Figure 5: The three linked views of cavities in 2OAR are shown. Cavities may be selected from any of these views. (a) The 3D view shows the
two cavities selected for connection in green and violet colors. Other cavities are shown in grey. (b) 2D graph visualization of the cavities. (c) This
panel shows the cavity dendrogram in which the height is proportional to the αmin of the connecting path between cavities. Some additional 3D
views are shown in the bottom row. From left to right: the dual graph representation, the simplified MaxST , and the two cavities to be connected.



illustrate this technique in 2D and 3D, respectively. A connection
may also be established by perturbing the position of the atoms
lining the path. However, computing such a perturbation without
introducing steric clashes is a non-trivial and challenging task.

PROXIMITY criterion
Atoms that lie within the interior of the molecule are subject to
greater physical constraints when compared to those lining the sur-
face and hence less suitable for perturbation. The PROXIMITY crite-
rion limits the number of atoms that are perturbed and hence limits
the number of perturbed interior atoms.

Consider the dual graph GMR as described earlier. Assign unit
weight to the arcs that belong to OR and zero weight to arcs in
ER. Let ni and n j be the representative nodes of cavities Ci and
C j in GMR, respectively. The optimal conduit between Ci and C j is
represented by the shortest path Pi j between nodes ni and n j in the
weighted graph GMR.

The conduit corresponding to Pi j may be computed by selecting
one atom per arc in the path and shrinking it by a value correspond-
ing to the α-value at which the triangle is inserted into the filtration.
The number of atoms perturbed is thus equal to the length of the
path contained in OR.

BOTTLENECK PROXIMITY criterion
The BOTTLENECK PROXIMITY is a hybrid of both criteria de-
scribed above. Again, the optimal conduit is represented as a path.
Given cavities Ci and C j, we first compute the path Pi j satisfying
the BOTTLENECK criterion. Let αmin be the weight of the minimum
weight arc in the optimal path Pi j. Construct a subgraph G of GMR
induced by arcs whose weight is greater than αmin. Now, construct
an optimal path in G satisfying the PROXIMITY criterion. Alterna-
tively, αmin may also be specified by the user instead of computing
it using the BOTTLENECK criterion.

The conduit may be computed from P′i j by selecting one atom
per arc similar to the PROXIMITY criterion. However, the reduction
in atom radius is now limited by αmin.

4 VISUALIZATION AND INTERACTION

We describe three linked interactive visualizations to help the user
identify important cavities and connect them based on different cri-
teria. Figure 5 shows these three views.

3D Visualization
In this view, the cavities are shown in the context of the molecule.
The cavities can be shown as union-of-balls, where each tetrahe-
dron in the cavity is represented by its power ball whose centre is
equidistant from the four atoms and radius is equal to the power dis-
tance. Alternately, we can also display the cavity in its dual graph
representation, where nodes are drawn at the centre of the power
ball for each tetrahedron, and edges between the nodes correspond
to the common triangle face. Each cavity is given a unique color
which is consistently used across different visualizations to help
identify the cavity quickly. The user can pick multiple cavities for
connection by simply clicking on the 3D view of the cavity. The
detected connecting paths are shown as a set of cylinders in the 3D
view. The MaxST and the pruned MaxST which connects the cavity
representatives can also be visualized in this view.

2D Visualization
This view shows the abstract representation of the cavities and
their connections based on BOTTLENECK criterion. We construct
a pruned sub-graph of the MaxST containing only the edges and
nodes needed for connecting the representative nodes of all the cav-
ities. The graph is further minimized by collapsing paths into edges.
After pruning and collapsing, the graph contains the representative
nodes of all the cavities and a few connecting nodes. These nodes

are connected by edges, each of which represents a path in the orig-
inal MaxST . The nodes can be colored and labeled based on dif-
ferent criteria. The edges are labeled by the minimum value of
α in the corresponding path. This visualization is interactive and
linked to other visualizations. The user can pick different cavities
by selecting nodes in the graph. The connecting path is shown by
highlighting the nodes and edges in the graph.

Hierarchical dendrogram

The negation of αmin of the optimal path Pi j connecting the cavities
Ci and C j can be treated as cavity distance measure. It can be shown
cavity distance measure satisfies the non-negativity, coincidence,
symmetry and triangle inequality properties. Based on this distance
measure, we can cluster the cavities using hierarchical clustering
and obtain the hierarchical dendrogram. This diagram shows the
proximity of cavities based on BOTTLENECK criterion. It is a useful
representation for showing the cavity hierarchy and may be used to
identify cavities to connect. However, we do not use clustering
to obtain this diagram, and instead construct this simultaneously
during computation of MaxST .

User interaction

In addition to multiple interactive views of the cavities and their
connections, the user is provided with other tools to identify im-
portant cavities. One such example is persistence based pruning of
cavities. The user can interactively specify a threshold persistence
value. The views are immediately updated and the cavities having
less persistence than the specified threshold are removed from the
three views. Another tool is automatic connection of all cavities us-
ing a perturbation below a given threshold. This is similar to what
was proposed in [26].

5 RESULTS AND DISCUSSION

In this section, we first briefly discuss the implementation and run-
time results. Then, we describe a qualitative comparison of our
method with existing approaches for connecting cavities. Lastly,
we demonstrate the utility of cavity connection using three exam-
ple case studies. We show that our method can be used for con-
necting fragmented cavities to form channels. We can also study
the propensity of a pathway being open based on the value of αmin.
Using Myoglobin case study, we show that our cavity connection
method can be used to reach similar conclusions as those reached
after extensive molecular dynamics simulations. These case stud-
ies were carried out in collaboration with molecular biologists who
are studying protein cavities and their effect on the stability of pro-
teins. For all these examples, we use α = 0, solvent radius of 1.4Å
and BOTTLENECK criterion for cavity connection unless specified
otherwise.

5.1 Runtime results

Cavity connection method is implemented as a standalone interac-
tive software in Java 1.6 and OpenGL 3.2. The following exper-
iments were performed on a workstation with 8 core Intel Xeon
processor and 16GB of RAM. The program requires weighted De-
launay complex, alpha complex and Delaunay flow as input. We

PDB id #Atoms Preprocess (sec)

2OAR 5772 0.357
1RHZ 4901 0.336
2YXQ 4853 0.337
2YXR 4789 0.298
1DUK 1256 0.111

Table 1: Preprocessing times for different molecules in the study.
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Figure 6: Comparison of cavity connection results with ROBUSTCAVITIES. (a) The disconnected channel detected as two separate cavities (col-
ored green and orange) in 2OAR. (b) The cavity connection result. (c) The ROBUSTCAVITIES result. Clearly, the volume of the merged cavity has
increased by a significant amount as compared to the result obtained by our cavity connection method. (d)–(f) Similar result is obtained for the
protein 2YXQ. (g)–(i) The result obtained for the protein 2YXR.

(a) (b) (c) (d) (e)

Figure 7: Cavity connection results for MscL transmembrane protein (PDB id: 2OAR). (a) All cavities detected in this protein are shown in
the context of the molecule. The membrane is shown as red and blue layers. (b) We select two cavities at either end of the membrane for
connection. (c) The connecting path found by the method is shown in pink. The two cavities shown in the dual graph representation for context.
The maximum perturbation for the connecting path was found to be 0.4Å. (d) Single connected cavity after atom perturbation. (e) The connecting
path helps identify the known ion transfer channel.

assume these are already available. Using this as input, we com-
pute the cavities, cavity representatives, cavity attributes such as
persistence, GMR, MaxST , and pruned MaxST in a preprocessing
step. The preprocessing times for the five molecules we discuss in
this paper are provided in Table 1. It should be noted that com-
pared to α-complex computation time which takes a few seconds,
the preprocessing time is significantly low. After preprocessing, the
GUI is set-up and user can choose cavities for connection based on
different criteria. The cavity connection time was observed to be in
the range 2ms to 20ms for these molecules. This ensures that cavity
connection can be done interactively.
5.2 Comparison
We perform qualitative comparison of our results with ROBUST-
CAVITIES method proposed by Sridharamurthy et al. [26]. RO-
BUSTCAVITIES also attempts to remove inconsistencies in cavity
detection by merging cavities into stable cavities using a global pa-
rameter ε . It is claimed that ROBUSTCAVITIES ensures that mini-
mal change is done to the cavity volume by carefully modifying the
atomic radii only for atoms lining the split triangles.

Figure 6 shows the result of our method and the ROBUSTCAV-
ITIES for three protein structures. The cavity connection method
causes limited perturbation to the atoms along the edges of the de-
tected path (only edges in OR are modified). On the other hand,
ROBUSTCAVITIES ends up connecting multiple cavities and sig-
nificantly changes the volume of the merged cavity. Our method
provides more flexibility and finer control over cavity connection,
and does very little change to the cavity volume, a desired outcome.

It should be noted that other cavity and channel detection meth-
ods have user-defined parameters like solvent radius which can in
principle be used to connect cavities. But they are global in nature,
and significantly affect the cavity volume. Change in volume in-
duced by ROBUSTCAVITIES is less than that induced by changing
the solvent radius and extracting the cavities. Since, our method

is performing better than ROBUSTCAVITIES, we expect similar re-
sults when compared against other methods.

5.3 Mechanosensitive Channel of Large Conductance
(MscL): Identifying a channel

This molecule has been used as a running example in this pa-
per (Figures 1 and 4). MscL (PDB id: 2OAR) is a transmembrane
ion transport channel. The transmembrane channel is detected as
fragmented set of cavities instead of a single connected channel.
The user selects two cavities at opposite ends of the channel (Fig-
ure 7(b)) and uses cavity connection method to find a good connect-
ing path to merge these cavities. The αmin for the connecting path
was found to be −1.38, which corresponds to maximum atomic
perturbation of 0.4Å. Refer to Figure 7 for detailed results.

5.4 Translocase SecY: Comparing mutants

Translocase SecY is transmembrane transporter protein which
forms an integral part of the translocon assembly [29]. In its wild
type closed state (PDB id: 1RHZ), the plug domain of the proteins
maintains a seal and prevents any leakage [21]. Half and full plug
deletion mutants of this protein were created to study this protein
(PDB ids: 2YXQ and 2YXR, respectively). Even after plug dele-
tion, these mutants attain packed structures and the channel is de-
tected as a set of fragmented cavities. However, experimental data
shows that plug deletions lead to increased rate of translocation of
proteins and small molecules.

We applied the BOTTLENECK criterion to connect the cavities
along the channel on all the three structures. The detailed results
are shown in Figure 8. The αmin of connecting paths were found to
be −1.76, −1.41 and −1.43 for 1RHZ, 2YXQ and 2YXR, respec-
tively. These values correspond to maximum atomic perturbations
of 0.69Å, 0.42Å and 0.43Å, respectively. This clearly indicates
that it is easier to open the channel in the mutants as compared to
the wild-type, which supports the experimental evidence that the
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(f) 2YXQ (g) 2YXQ (h) 2YXQ (i) 2YXQ (j) 2YXQ
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Figure 8: The results for Translocase SecY case study. (a) The cavities detected in the wild type protein (1RHZ). (b) The cavities selected for
connection. (c) The connecting path (pink) between these cavities. The maximum perturbation for this connecting path was found to be 0.69Å.
(d) The resulting cavity after perturbation of atoms. (e) The connecting path as a channel across the membrane. (f)–(j) Similar results for the
half plug deletion mutant (2YXQ) of the protein. The maximum perturbation for the connecting path was found to be 0.42Å. (k)–(o) The results
for the full plug deletion mutant (2YXR) of the protein. The maximum perturbation was found to be 0.43Å.

mutants are more conducive to transport of molecules through the
channel.

5.5 Myoglobin: Identifying the migration path

Myoglobin (PDB id: 1DUK) functions as an oxygen storage and
delivery protein in the heart and skeletal muscles. The gas molecule
binds to the Fe atom present in the heme moiety buried within the
protein [3]. This primary binding site where ligand carbon monox-
ide (CO) binds to Fe is referred to as the distal pocket (DP). Inter-
action of Myoglobin and Xenon (Xe) has been studied earlier and it
was observed that Xe populates four pre-existing cavities in Myo-
globin referred to as Xe1 to Xe4 [28]. Further, it has been shown in
previous molecular dynamics simulation studies that CO occupies
the cavities Xe1 [5] and Xe4 [3] for the maximum amount of time.
Xe4 is close to the distal pocket while Xe1 is on the proximal side
of the heme. The path taken by CO to migrate from distal side of
heme to the proximal side and vice versa is of crucial significance
for understanding the functionality of this protein.

In an extended molecular dynamics simulation study by
C. Bossa et al. on wild type sperm whale myoglobin, it was ob-
served that over the time-scale of 80 ns, transient cavities form and
collapse due to protein dynamics [2]. Two cavities which the au-
thors labelled as Phantom 1 (Ph1) and Phantom 2 (Ph2), highlighted
in Figure 9(b), were deemed important. Whereas Ph1 seemed a
stable cavity existing for 98% of time, Ph2 was a transient cavity
occurring 33.5% of the time over the duration of the simulation.
These cavities played a crucial role in movement of CO from DP to
Xe1 since they connected the spatially distant Xe4 and Xe3 sites in
Myoglobin. It was found that during the course of its journey CO
resides in Ph2 for 0.1 ns and inhabits Ph1 for as long as 3.2 ns.

We applied BOTTLENECK criterion of cavity connection to find
the connecting path between DP and Xe1. We found that the con-
necting path passes through Xe4, Ph1, Ph2, Xe3 and Xe2 to reach

Xe1. The αmin for the connecting path was found to be −1.11,
which corresponds to maximum atomic perturbation of 0.25Å. This
connection is shown in Figures 9(c), 9(d) and 9(e). Thus, we found
that the proximal Xe1 is connected with the distal pocket tracing
a direct path through xenon binding sites around the heme moi-
ety. This result agrees completely with the results of the extended
molecular dynamics simulation performed earlier [2].

We also applied PROXIMITY criterion to find connecting path be-
tween DP and Xe1. A short direct path with only two edges in OR
was obtained, as shown in Figure 9(f). But, αmin for this connection
was found to be −2.56 which corresponds to maximum perturba-
tion of 2.16Å. This clearly suggests that direct connection between
distal and proximal sides of the heme is impossible, or highly im-
probable. Hence, the path obtained by applying BOTTLENECK cri-
terion is biologically significant.

6 CONCLUSIONS

Cavity detection methods suffer from unstable behavior due to un-
certain nature of protein structure data. We have described a novel
solution via connecting molecular cavities under different optimiza-
tion criteria. We described efficient solutions using an α-complex
based internal representation of the cavities and the region occu-
pied by the molecule. The computed connection helps in quanti-
fying the ‘connection distance’ between cavities. This connection
distance signifies the stability of the cavity in the presence of un-
certainty. A larger distance implies increased difficulty to connect
the cavities. Hence, they are expected to be more stable in uncer-
tain dynamic environments experienced by the protein. An interac-
tive visual interface with linked views aids the user in identifying
interesting cavities to connect. There is scope to improve these vi-
sualizations and the user experience further. It is important to ad-
dress the problem of channel and cavity extraction in uncertain data
based on sound theoretical foundations. The methods proposed in
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Figure 9: The results for Myoglobin case study. (a) The set of cavities detected in Myoglobin bound with heme. (b) The cavities of interest in
this protein that have been studied earlier are labeled. We are interested in finding the connecting path between DP and Xe1. (c) A connecting
path (pink) from Xe1 is detected that traverses through Xe2, Xe3, Ph2, Ph1 and Xe4 to reach DP. This connection was suggested after extensive
molecular dynamics simulations. However, we are able to detect this connection directly using the cavity connection method. The maximum
perturbation required for detecting the path is found to be only 0.25Å. (d) The detected path (pink) along with dual graph representations of the
two selected cavities. (e) The merged cavity (blue) formed after atom perturbation. (f) Using PROXIMITY criterion for finding the connecting path
between DP and Xe1 results in detection of direct path (pink) which does not pass through other Xe sites. The maximum perturbation for this
path was found to be 2.16Å which suggests that direct connection between DP and Xe1 is highly improbable.

this paper can be adapted for other Voronoi diagram based meth-
ods like CAVER [24], MOLE [23] and the techniques proposed by
Lindow et al. [18] and Sridharamurthy et al. [26]. We believe that a
user-driven flexible cavity connection capability would be a useful
addition to these established channel and cavity detection tools.
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