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Abstract
Contour trees are extensively used in scalar field analysis. The contour tree is a data structure that tracks the evolution of level
set topology in a scalar field. Scalar fields are typically available as samples at vertices of a mesh and are linearly interpolated
within each cell of the mesh. A more suitable way of representing scalar fields, especially when a smoother function needs
to be modeled, is via higher order interpolants. We propose an algorithm to compute the contour tree for such functions. The
algorithm computes a local structure by connecting critical points using a numerically stable monotone path tracing procedure.
Such structures are computed for each cell and are stitched together to obtain the contour tree of the function. The algorithm
is scalable to higher degree interpolants whereas previous methods were restricted to quadratic or linear interpolants. The
algorithm is intrinsically parallelizable and has potential applications to isosurface extraction.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Geometric algorithms, languages, and systems

1. Introduction

Scientists and engineers are increasingly using higher order
FEM simulations. Consider, as an example, the hp-adaptive
variant [BG92] of finite element methods for which Nektar++
[CMC∗15], Concepts [Sch], and Hermes [Sol] are three among
many existing open source software packages and libraries. These
methods rely on piecewise polynomial approximations, using el-
ements (possibly curvilinear) of variable size h and polynomials
of order p within an element. Higher order elements are suitable
for efficient parallel implementations and allow for higher numeri-
cal accuracy and convergence than linear basis functions by either
adaptively reducing the element’s size h, by increasing the polyno-
mial order p, or by combining both approaches. For an equivalent
number of degrees of freedom, one can obtain the same level of
accuracy with fewer elements. In this paper, we study piecewise
higher order real-valued functions defined on planar or curvilinear
elements representing 2-manifold geometries.

Motivation and related work. Whereas higher order discretiza-
tions have become a widely accepted tool for many applications,
visualization techniques have to adapt and better exploit the non-
linear and often polynomial nature of the data sets. Standard vi-
sualization techniques such as contouring, volume rendering, and
topology-based methods assume the basis functions to be linear.
These methods first create compatible linear approximations of the
geometry as well as of the higher order data generally through
adaptive tessellation [KT03,RCMG07] in order to increase numeri-
cal accuracy and topological fidelity. Since the basis functions used
to represent geometry and the attribute field functions are not neces-
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Figure 1: (a) A 2D scalar field with two maxima (red) in the interior,
two maxima on the boundary, one minimum (blue) in the interior,
and three minima on the boundary. (b) Contour tree of the scalar
field, whose nodes are exactly the critical points of the scalar field.

sarily the same nor of same polynomial order, accurate tessellation
is a challenging task [SBM∗06]. Further, the use of high sampling
density increases memory usage but may still contain approxima-
tion errors.

Many visualization techniques for higher order scalar fields have
begun to emerge in recent years [CSP01,WCG∗03,NK06,SBM∗06,
MNKW07, POS∗11, NLKH12]. Whereas these contouring, parti-
cle tracking, and rendering techniques for higher order data seek
for improving numerical accuracy of the visualization, topological
fidelity is equally important. Indeed, topology-based methods are
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important for analysis and visualization of scalar data, since they
provide abstract representations of key features in the data.

Our focus is on the computation of contour trees. The contour
tree captures significant topological features of a data set by com-
puting the nested relationships between the connected components
of level sets in a scalar field, as illustrated in Figure 1. Contour trees
are widely applied in the context of volume visualization – for ef-
ficient computation of isosurfaces [vKvOB∗97], transfer function
design [FTAT00, TTF04, WDC∗07, ZT09, DN12], and for effective
and flexible exploration of isosurfaces [CSvdP10]. The application
of contour trees to volume data analysis such as feature extraction
and tracking [BWT∗11,WBD∗11,DNN13], symmetry and similar-
ity detection [TN11, SSW14] is also clearly demonstrated.

Many efficient algorithms have been proposed for computing the
contour tree for two- and three-dimensional scalar fields [dBvK97,
vKvOB∗97,TV98,CSA03,CLLR05] and considerable efforts have
been undertaken to develop parallel implementations [PCM04,
MDN12, LPG∗14, AN15, CWSA16, GFJT16]. However, these
methods typically suppose the data being sampled at the mesh/grid
vertices and varying linearly along the edges. In this paper, we
tackle the problem of computing contour trees specifically dedi-
cated to higher order interpolants without falling back to linear ap-
proximations of the data.

Dillard et al. [DNW∗09] described a method to compute the con-
tour tree for quadratic interpolants. They proceed by first tessellat-
ing a triangle in the input mesh into monotone triangles and then
apply classical methods for contour tree computation. This method
does not scale to higher order elements because it requires a case
analysis for computing the tessellation. This case analysis is cum-
bersome even for the case of quadratic interpolants. Pascucci and
Cole-McLaughlin [PCM04] and Acharya and Natarajan [AN15]
describe parallel algorithms to compute the contour tree for piece-
wise trilinear interpolants over a 3D grid. Minima and maxima are
restricted to vertices of the grid and there are only four possible
join/split tree configurations. Both methods compute the join and
split trees for a single grid cell by looking up a case table and stitch
them together.

Carr and Snoeyink [CS09] propose an abstract framework for
handling interpolants of arbitrary order and design a finite state au-
tomaton for computing the contour tree. This framework was em-
ployed either explicitly or implicitly for computing the contour tree
in parallel for both trilinear interpolants [PCM04, AN15] and for
piecewise linear interpolants [MDN12,LPG∗14]. These algorithms
used combinatorial routines to compute the tree corresponding to
an individual cell. Such an approach is not feasible for higher order
interpolants. Our method may be considered as the first concrete
realization of this abstract framework for higher order interpolants.

Summary of results. Our algorithm has two phases: local and
global. The local phase computes the contour tree restricted to a
single triangle by exploiting the monotone connectivity of criti-
cal points within an element. Inspired by the approach from Chi-
ang et al. [CLLR05], we compute monotone paths with respect to
the polynomial function to connect the critical points inside an el-
ement. This leads to an advantageous dimension reduction of all
involved sub-problems because the restriction of a bivariate poly-

nomial function to a specific direction reduces to a univariate poly-
nomial. The global phase stitches together the local trees.

This algorithm may be considered as a hybrid approach between
the monotone path tracing algorithm of Chiang et al. [CLLR05]
and the two-pass union-find based algorithm of Carr et al. [CSA03].
Both algorithms have to be suitably extended to be made applicable
to higher order polynomials. Our algorithm combines the advan-
tages of both approaches. The algorithm of Chiang et al. is output
sensitive and does not require processing all sample points. It is ap-
propriate for our local tree computation because we enjoy the ben-
efit of sampling the polynomial only along the monotone paths as
opposed to sampling uniformly over all triangles. The global stitch-
ing procedure is a combinatorial and computationally efficient al-
gorithm.

Our algorithm is designed to work for any higher order inter-
polant. We demonstrate the effectiveness of our approach using ex-
periments on quadratic and cubic polynomial interpolants. We also
performed experiments on real-world scientific data obtained using
COMSOL [Com11].
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Figure 2: Join tree (a) and split tree (b) of the function described
in Figure 1. The contour tree is the union of the join and split trees.

2. Background

Let M be a d-manifold with or without boundary. Let f : M−→ R
be a smooth (C∞ differentiable) real function. A point p ∈ M is
called a critical point if ∇ f (p) = 0. A critical point at which the
Hessian matrix is non-singular is called a non-degenerate critical
point. The function f is said to be a Morse function [Mil63] if and
only if

• its critical points are non-degenerate and lie in the interior of M,
• the critical points of f restricted to the boundary of M are non-

degenerate,
• the critical values (values of f at critical points both in the inte-

rior and the boundary of M) are distinct.

A level set is the preimage f−1(c) of a real value c, which is
called an isovalue. The connected components in a level set are
called contours. The quotient space of M by the equivalence re-
lation “a relates to b if a and b lie within the same contour” is a
graph called the Reeb graph [Ree46]. If the domain M is simply
connected (genus 0) then the Reeb graph is acyclic and called the
contour tree. Nodes in a contour tree correspond to critical points
of f . Maxima and minima are leaves of the tree, while saddles are
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interior nodes of degree 3. In order to explain the structure of the
contour tree, it is convenient to use the metaphor of contours ‘ap-
pearing’, ‘disappearing’ or ‘merging’. A contour appears when the
isovalue increases past the critical value of a minimum. A contour
disappears when the isovalue increases past the critical value of a
maximum. When the isovalue increases past the critical value of
a saddle, either one contour splits into two or two contours merge
into one. Figure 1 shows a 2D function and the corresponding con-
tour tree. Nodes colored red, blue, and green correspond to max-
ima, minima, and saddles, respectively. The contour tree provides
the user with direct insight into the topology of all level sets and
reduces the time required to understand the topological structure of
the data. The join tree and split tree are defined in a manner anal-
ogous to the contour tree, by tracking connected components of
the sub-level sets (preimage of f−1(−∞,c]) and the super-level sets
(preimage of f−1[c,+∞)), respectively. Figure 2 shows the join and
split tree of the scalar function shown in Figure 1. They are useful
intermediate structures for computing the contour tree as explained
in Section 3.2 and Section 3.6.

3. Algorithm

We now describe an algorithm for computing the contour tree of a
2D piecewise polynomial function.

3.1. Input

The domain is represented by a triangle mesh of genus 0. We re-
quire the input data to be continuous across the domain so that the
level sets are also continuous, see Figure 3. The polynomial inter-
polant is specified by a set of samples in each triangle. We use the
word patch to refer to a triangle together with the polynomial in-
terpolant as specified by the set of samples. A sample is specified
by two parameter values for the location and one function value.
The number of samples depends on the degree of the polynomial
function. For example, a polynomial of maximal degree 2 is defined
by 6 samples, whereas a maximal degree-3 polynomial requires 10
samples. If required, the monomial coefficients of the polynomial
may be computed from the samples by solving a linear system.
Typically, three samples are located at vertices of the triangle. The
location of the remaining samples depends on the particular finite
element implementation. Figure 3b shows a quadratic polynomial
defined by six sample points (black). For comparison, the piecewise
linear interpolant defined by the same set of six sample points is
shown in Figure 3a. Figure 3d shows two quadratic patches defined
by 6 sample points each. The functions are continuous across the
common boundary as the continuous isolines indicate. The geome-
try of the element may also be modeled as a polynomial function,
possibly of different order than the attribute data. In this case, a sec-
ond set of samples is required, consisting of two parameter values
and a 3D position per sample.

3.2. Overview

The algorithm proceeds by building the local join and split tree of
a patch independent of other patches. A local join tree captures the
connectivity of sub-level sets of a patch, where topology change
events are associated with local minima and join saddles. Similarly,
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Figure 3: Linear and higher order interpolation over a triangle for
a function sampled at multiple points (black). (a) Linear interpola-
tion within each of the four triangles obtained by subdividing the
input triangle. (b) Quadratic polynomial function interpolating the
sample points. (c) Cubic polynomial function interpolating 10 sam-
ple points. (d) Piecewise continuous quadratic polynomial sampled
at 6 points each over two triangles. (e) Piecewise continuous cubic
polynomial sampled at 10 points within each triangle. Isolines are
continuous across common boundary.

the local split tree captures the connectivity of super-level sets of a
patch. Topology change events here are associated with local max-
ima and split saddles. The local join trees of adjacent patches are
stitched together to obtain the global join tree of the input scalar
field. Similarly, the local split trees are stitched together into the
global split tree. Finally, the global join and split trees are merged
using an efficient tree merge procedure to obtain the desired con-
tour tree of the input scalar field. Essentially, the algorithm consists
of four steps:

1. Compute critical points for each patch.
2. Construct local join tree and split tree for each patch.
3. Stitch local join trees together to obtain the global join tree.

Stitch local split trees to obtain the global split tree.
4. Merge the global split and join trees together to obtain the con-

tour tree.

Prior to processing a patch, we apply a rigid body transforma-
tion that positions the triangle on the XY-plane. This transforma-
tion simplifies future numerical computations without affecting the
topology of the level sets and hence the local join and split trees.

3.3. Critical points of a patch

The critical points of a 2D polynomial are computed by solving for
the roots of a polynomial system given by the two partial deriva-
tives. Analytic methods are not available to compute roots of such
a polynomial system, particularly for higher degrees. We use PHC-
pack [Ver11] for computing the roots of the polynomial system.
PHCpack uses homotopy continuation methods and provides exact
roots whenever they are computable and numerically approximate
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Figure 4: Tracing a monotone descending path from c1. The steepest descent direction (blue) helps locate monotonic segments. If a path
reaches the boundary, it is restricted to the boundary.

solutions when the root finding is intractable. The critical points
lie on the XY-plane. The method reports points lying in the inte-
rior of the triangle. Line-critical points, defined as critical points
lying on the triangle boundary, are identified by first computing the
restriction of the polynomial to each bounding line. Note that the
restrictions are univariate polynomials.

3.4. Local join and split trees

The critical points computed in the previous step together with the
triangle vertices constitute the potential nodes of the local join and
split tree of a patch. We next compute the arcs of these local trees.
Below, we describe the algorithm for computing the local join tree
(Algorithm 1). The local split tree is computed using a similar pro-
cedure. The algorithm assumes that the polynomial f defined on
a triangle together with the set of its critical points is available as
input.

Most methods to compute the join tree for piecewise linear func-
tions explicitly track the connected components of sub-level sets
during a sweep over the domain and process all vertices of the in-
put mesh [CSA03, DNN13]. This approach does not extend well
to higher order interpolants due to two reasons. First, the critical
points of a piecewise linear function are necessarily located at ver-
tices of the input mesh and hence it is sufficient to process vertices
of the mesh. However, the critical points of a higher order poly-
nomial interpolant may lie in the interior of the triangle. Second,
computing the level sets for higher order interpolants is challeng-
ing both in terms of the computational cost and numerical accu-
racy. We instead employ an approach that directly computes the
downward arcs incident on a join tree node. The potential nodes
of the join tree are processed in increasing order of function value
and the downward arcs incident on it are identified by following
monotone descending paths from the corresponding critical point
/ triangle vertex. A monotone descending path (MDP) is a path in
the patch along which the value of f decreases monotonically. The
path originates at a critical point / triangle vertex and terminates
at a different critical point / triangle vertex or merges into another
descending path. The MDP terminates in the sub-level set compo-
nent that contains its origin. Hence, the MDP helps determine the
downward arcs from the corresponding join tree node.

The critical points and triangle vertices are processed in increas-
ing order of value of f . We maintain a forest of join trees containing

all critical points and vertices processed so far. When the next crit-
ical point or vertex c is processed, the forest is updated to include
c. The local neighborhood of c is classified into regions where f
assumes values lower or higher than f (c). This classification deter-
mines the number of MDPs traces from c. If an MDP terminates
at a critical point c′ then we insert an arc from c to the root of the
tree containing c′. Alternatively, if the MDP intersects a previously
computed MDP, say originating at c′′, then we insert an arc from c
to the root of the tree containing c′′. The forest of trees is stored as
a union find data structure [CLRS09]. After all critical points and
vertices are processed, the forest consists of a single tree rooted at
the global maximum of the patch. This tree is the local join tree of
the patch.

Monotone path tracing. Computing the exact geometry of a
monotone path is computationally challenging. However, it is suf-
ficient for our purposes to compute sample points on the path. We
represent an MDP as a piecewise linear curve and store it as a finite
collection of points [x0,x1, . . . ,xk]. Here, x0 is the source critical
point, xk is the terminal point, and f (xi+1) < f (xi). We now de-
scribe how an MDP is traced. Ensuring numerical accuracy while
reducing computational costs makes this a challenging problem. In
particular, (a) appropriate number of MDPs needs to be traced from
a critical point / triangle vertex, (b) the tracing procedure should
ensure the monotone property, and (c) the terminal point should be
recognized correctly.

We reduce all numerical computations to root finding on uni-
variate polynomials, thereby simplifying the computation. We use
GNU Scientific Library for processing the univariate polynomi-
als [Gal09]. To facilitate the identification of the number of MDPs
originating at a critical point or vertex, we first compute disjoint
axis-aligned bounding boxes for all of them. Chattopadhyay et
al. [CVY17] show that these boxes always exist. In practice, we
compute boxes with diagonal length smaller than dmin, the mini-
mum distance between critical points / triangle vertices. Assuming
that f is a Morse function, the local neighborhood may be parti-
tioned into sectors with values of f alternating between higher and
lower than f (c). We compute the restriction of f to the boundary of
the bounding box Rc. This restriction is a univariate piecewise poly-
nomial function fRc . Roots of fRc − f (c) partition the boundary of
Rc into segments. If there are more than four roots then we compute
a smaller bounding box by halving the diagonal length. Choose a
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point s within each segment and initialize an MDP [x0 = c,x1 = s] if
f (s)< f (c). Next, compute the restriction of f to the ray along the
negative gradient direction at s. This restriction is also a univariate
polynomial, say fs. The minimum of fs closest to s is inserted as the
next point x2 of the MDP. This process is repeated to compute sub-
sequent points xi on the MDP. This iterative procedure terminates
either when xi lies in the interior of the bounding box of a criti-
cal point / triangle vertex c′ or when xi−1xi intersects a previously
computed MDP.

Example. Figure 4 illustrates the tracing of an MDP p from a
critical point c1 in a triangle. All the critical points of the patch are
shown in red. The bounding box is shown only for critical points c1
and c2 to reduce clutter. The direction of steepest descent is shown
using the arrow glyph. The polynomial f defined on the triangle is
restricted to a ray along the steepest descent (Figure 4(b), shown
in blue). Let r be the closest minimum of the resulting univariate
polynomial. In this case, the point r lies outside the boundary of the
patch. The univariate polynomial decreases monotonically until r.
So, the point of intersection of the ray with the triangle boundary
is chosen as the next point, x2 on the MDP. When an MDP reaches
the triangle boundary, it is restricted to the boundary for simplicity.
The steepest descent direction on the boundary is computed at x2,
shown using an arrow glyph in Figure 4(c). Next, the univariate
polynomial along the blue ray is computed followed by locating the
closest minimum r, see Figure 4(d). The tracing stops because r lies
within the bounding box of c2. In this case, r happens to be exactly
equal to c2. The resulting path is p = [x0 = c1,x1 = s,x2,x3 = c2].

3.5. Global join and split trees

The local join trees are stitched together resulting in the global join
tree. Similarly the global split tree is computed by stitching the
local split trees. The stitching procedure is similar to the one pro-
posed by Acharya and Natarajan [AN15]. We describe it here for
completeness, see also Algorithm STITCHJOINTREES. The sorted
list of nodes of two input join trees are merged into a single sorted
list. Duplicate nodes from the boundary of the two corresponding
sub-domains lie adjacent to each other in the sorted list. An edge is
inserted between every pair of duplicate nodes, resulting in a sin-
gle connected graph that may contain cycles. The stitched join tree
is computed by sweeping the graph in increasing order of function
values and tracking connected components of subgraphs using a
union-find data structure. Repeated application of the stitching pro-
cess on all local join trees and on intermediate stitched trees results
in the global join tree.

3.6. Contour tree

The global join and split trees are merged resulting in the global
contour tree [CSA03]. This merge step is also described in previ-
ous work. For completeness, the merging procedure is described in
Algorithm MERGEJOINANDSPLITTREE. The algorithm maintains
a set L of leaf nodes in the join and split trees and processes them
in sequence. If the current leaf node under consideration, say l, is
an unprocessed non-root node then the edge between l and its par-
ent from the appropriate tree is added to the resulting contour tree.
After processing, l is deleted both from the list L and the join/split

tree that contained it. If this deletion results in the parent of l to
become a leaf node , then that node is inserted into L.

3.7. Degeneracies

A patch that contains at least one non-isolated critical point is said
to be degenerate. Figure 5(a) shows a degenerate function defined
on a triangle. All points on the line c1c2 are local maxima. The
function in this case is not Morse and hence Algorithm 1 does
not apply. In particular, individual critical points cannot be isolated
and the MDP tracing fails due to the presence of zero gradient re-
gions. We compute the local join and split tree for the degenerate
patch by subdividing it into smaller triangles and assuming linear
interpolation within each smaller triangle. The degenerate patch is
processed as follows. First, compute the line-critical points of the
patch and insert them as vertices. Next, compute a triangulation
of the set of triangle vertices and the newly inserted vertices. This
triangulation subdivides the interior of the degenerate patch into
smaller triangles. For example, Figure 5(b) shows the decomposi-
tion of the patch into three triangles. Assume linear interpolation
within each triangle and compute the local join tree and local split
tree of the patch using the sweep algorithm [CSA03]. Inserting the
line-critical points ensures that the subsequent stitching step applies
to all patches, degenerate or otherwise, without modification. Note
that the sweep algorithm uses Simulation of Simplicity [EM90] to
handle flat patches.

(a) (b)

Figure 5: (a) A degenerate patch. (b) Subdividing the patch into tri-
angles after inserting all line-critical points. The local join tree and
local split tree is computed by assuming piecewise linear interpo-
lation within each smaller triangle.

3.8. Correctness

We claim that the tree computed by the above algorithm is the
contour tree of the piecewise polynomial input. If the MDPs are
computed accurately from all critical points of a patch then Algo-
rithm 1 indeed computes the local join tree. This follows from the
result of Chiang et al. [CLLR05]. The algorithm traces all required
MDPs from a critical point / triangle vertex as shown in Lemma 3
in the appendix. Degenerate patches are also processed correctly.
If a patch contains a non-isolated critical point then the degener-
ate region extends to the boundary as shown in the appendix, see
Lemma 1 and 2. If the degenerate region is a curve then the cor-
responding line-critical points are included, else the entire patch is
flat. In either case, all critical points are included into the join tree
and the degenerate patch is processed correctly.
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Algorithm 1: BUILDLOCALJOINTREE

Input: Polynomial function f defined on a triangle that lies on the XY plane
Input: Set C of critical points and triangle vertices. Minimum distance, dmin, between points in C.
Output: Local join tree JT
/* Let P denote the set of monotone descending paths(MDP). Each p ∈ P is of the form

[x0,x1, . . . ,xk], where xi ∈C. */
/* Let Rc denote the bounding box of a point c ∈C. */
/* Let S denote the set of starting points of monotone descending paths. These are points

x1 that lie on the bounding box of a point in C. */
/* Let UF denote a union-find data structure to store collection of points in C. Each set

in UF is represented by the critical point with highest function value. */
1 Initialize the node set of JT to C
2 Initialize UF ←− /0, P←− /0
3 for each c ∈C in ascending order of function value do
4 NewSet({c},UF)
5 Compute an axis parallel bounding box, Rc with c as center and diagonal length dmin
6 Compute roots of f restricted to the boundary of Rc
7 Compute the collection S of points s between pairs of adjacent roots on the boundary of Rc that satisfy the condition f (s)< f (c)
8 for each s ∈ S do
9 Start a monotone descending path p, initialize it to [c]

10 Set x1←− s, i←− 0
11 repeat
12 Set i←− i+1
13 Append xi to p
14 Compute fi, the restriction of f to the ray along the negative gradient of f at xi
15 Set xi+1 as the minimum of fi that is closest to xi

16 until xi+1 lies within Rc′ for some c′ ∈C OR the line segment xixi+1 intersects a path p′ ∈ P;
17 if xi+1 lies within Rc′ then
18 Append c′ to p
19 Add p to P
20 Add edge cc′ to JT
21 Union(c,c′,UF)

22 end
23 if xixi+1 intersects a path p′ ∈ P at a point x then
24 Append x to p
25 if x is not a point in the representation of p′ then
26 Insert x into p′ at the appropriate location
27 end
28 Add p to P
29 Let c′ denote the source critical point for p′

30 if c 6= Find(c′,UF) then
31 Add edge (c, Find(c′,UF)) to JT
32 Union(c,c′,UF)

33 end
34 end
35 end
36 end
37 Return JT

3.9. Analysis

We now analyze the run time of the contour tree algorithm begin-
ning with Algorithm 1. Let nc denote the number of critical points
in the patch. Sorting the critical points takes O(nc lognc) time. As-
suming that the function is Morse, a constant number of MDPs are
traced for each critical point resulting in O(nc) Find and Union

calls. This takes O(ncα(nc)) time. Let np denote the maximum
number of segments in an MDP. Checking for intersection with
previously computed MDPs takes O(n2

cn2
p) time and is the costliest

step in the MDP tracing procedure. So, Algorithm 1 takes O(n2
cn2

p).
Let nt denote the number of triangles in the input. Stitching the lo-
cal join trees requires O(ntnc) Find and Union calls, which takes
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Algorithm 2: STITCHJOINTREES [AN15]
Input: Join trees JT1 and JT2 for two sub-domains that have a

common boundary
Input: List of nodes of the two trees N1 and N2 sorted in

ascending order of function value
Output: Stitched join tree JT

1 Initialize JT ←− JT1∪ JT2
2 UF ←− /0
3 N←−Merge(N1,N2) for (i←− 1to |N|−1) do
4 if vi and vi+1 are redundant nodes on the common

boundary then
5 NewSet(vi,UF)
6 NewSet(vi+1,UF)
7 Union(vi,vi+1,UF) making vi+1 as the head
8 JT.vi.Parent←− vi+1
9 Add vi to JT.vi+1.ChildrenList

10 end
11 for (each child c j of vi) do
12 if c j is present in UF then
13 if vi is present in UF then
14 NewSet(vi,UF)
15 end
16 Delete c j from JT.vi.ChildrenList
17 c′←− FIND(c j,UF)
18 if vi 6= c′ then
19 JT.c′.Parent←− vi
20 Add c′ to JT.vi.ChildrenList
21 Union(c′,vi,UF) ensuring vi as the head
22 end
23 end
24 end
25 end
26 Return Stitched join tree JT

O(ntncα(ntnc)) time. Computing the global split tree also takes
the same time. The global join and split tree can be merged in lin-
ear time on the total number critical points, which is O(ntnc). For a
degree d polynomial, nc ≤ d−1. So, the total time to compute the
contour tree is dominated by the MDP tracing, which is O(ntd2n2

p).

4. Experimental Results

We now present results of computational experiments on 2D
quadratic and cubic polynomials. The algorithm is implemented in
C++. The open source C++ library Eigen [GJ∗10] is used for find-
ing the solution of a system of linear equations, the GNU Scientific
Library [Gal09] for finding the roots of a univariate polynomial,
and PHCpack [Ver11] for finding roots of a polynomial system.
The contour tree computed by the algorithm contains all vertices
of the input mesh as nodes. Hence, the output is the so-called aug-
mented contour tree. In our implementation, the degree-2 nodes are
pruned away. They may be retained if required.

Piecewise quadratic input. The thermal conductor dataset rep-
resents the temperature distribution at the surface of an electronic
component computed by solving a multi-physics simulation using

Algorithm 3: MERGEJOINANDSPLITTREE [AN15]
Input: Global join tree JT and split tree ST
Output: Contour tree CT

1 L←− Set of leaves in JT and ST
2 while L 6= φ do
3 if l is a leaf in JT or ST then
4 Process l and remove it from L
5 T = tree in which l is a leaf
6 while l 6= T.root and l is not processed do
7 n = l
8 l = parent vertex of l in T
9 end

10 Remove n from T and L
11 Add arc(n, l) to CT
12 if l is either a leaf in JT or ST then
13 Add l to L
14 end
15 end
16 end

COMSOL [Com11]. The temperature field is a polynomial of max-
imal degree 2 within each triangle. The six samples are located at
the triangle vertices and at the mid-point of the edges, as shown
in Figure 3b. For this dataset, the geometry of the elements is also
modeled as a quadratic polynomial that accurately fits the curved
surface. Figure 6a-6c shows the temperature field, its critical points
together with a set of contours, and the contour tree computed us-
ing the proposed algorithm. A topological feature is represented by
a min-saddle or max-saddle arc / path in the contour tree. The size
of a topological feature is measured using the notion of topological
persistence [EH10], which is equal to the difference in function
value at the min-saddle or max-saddle pair.

Figure 7: Top of the conductor contains multiple degeneracies. The
algorithm identifies all the critical points and handles the degener-
ate patches gracefully.

The contour tree contains 530 nodes, several of them correspond-
ing to small-sized topological features. Given a persistence thresh-
old, specified as a fraction of the range of function values, the con-
tour tree may be simplified by iteratively removing arcs incident on
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: Contour trees for piecewise quadratic and cubic polynomials (a) Temperature distribution on the surface of a thermal conductor
as a piecewise quadratic function. (b) Critical points and contour lines. (c) Contour tree consisting of 530 nodes. (d) Contour tree after
simplification using a persistence threshold of 0.1% contains 67 nodes. It contains two similar subtrees as expected. (e) A cubic function
defined on a heater geometry. (f) Critical points and contour lines. (g) Contour tree consisting of 268 nodes. (h) Contour tree with 178 nodes
obtained after simplifying using a persistence threshold of 0.5%.

leaf nodes [CSvdP10]. Figure 6d shows the contour tree simplified
using a persistence threshold of 0.1%. The temperature field con-
tains multiple degeneracies, particularly on the top plate as shown
in Figure 7. Our algorithm handles all degenerate patches grace-
fully and computes the contour tree. The simplified tree shows the
two significant maxima located at the center of the two legs sur-
rounded by a few low persistence maxima. Note that the tree con-
tains two similar subtrees as expected. The subtrees correspond to
the symmetric legs of the conductor. It took approximately 15 min-
utes to compute the contour tree for this data set (8598 vertices,
4298 triangles). Algorithmic and code optimizations may result in
significant reduction in running times. For example, several steps
of the algorithm can be parallelized. We plan to do this in future.

Figure 9 compares the contour tree of a piecewise quadratic
function with the contour tree of piecewise linear (PL) approxima-
tions. The PL approximations are computed by applying a uniform
refinement of the input triangulation. There are large differences
between the contours of the original data and those of the PL ap-
proximations even after a high level of refinement. A close-up view
shows how the topology of the contours, and thus the contour trees,
differ. The visual comparison indicates that a higher order inter-

polant can capture all topological features even if the surface is
discretized using fewer number of triangles. The PL approximation
is not able to accurately capture the level set topology even with a
15-fold increase in number of triangles. The section of the contour
tree shown in Figure 9(i) contains more number of maxima than
Figure 9(j). However, these additional maxima are introduced due
to flat regions and have zero persistence.

Piecewise cubic input. The heater dataset is a sum of Gaussian
function sampled on the surface of a heater. Each triangle in the
mesh representing the heater surface contains ten sample points.
Three samples are located at the vertices, two within each edge
subdividing it into equal sized segments and one at the barycenter.
A polynomial of maximal degree 3 interpolates the ten samples.
Figure 6e-6h shows the cubic function, its critical points together
with a set of contours, the contour tree computed using our algo-
rithm, and the contour tree simplified using a persistence threshold
of 0.5%. Gradient computation and root finding are costlier for the
cubic interpolant. However, the use of univariate polynomials to
trace monotone paths and the use of bounding boxes helps resolve
several numerical issues. This data again contains multiple degen-
erate patches. All degeneracies are gracefully handled.
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Figure 10 compares the contour tree of the piecewise cubic func-
tion defined on the heater dataset with the contour tree of its PL
approximations. The contours of the PL approximation is signifi-
cantly different from that of the piecewise cubic function defined
on an equal number of triangles. A 10-fold increase in number of
triangles seems to be necessary to obtain similar contours.

5. Conclusions

We have described a simple algorithm for computing the contour
tree of a 2D piecewise polynomial scalar field that is defined over a
triangle mesh. The algorithm employs efficient numerical compu-
tations to trace monotone paths within each triangle. All other steps
are combinatorial in nature. Experimental results show how the al-
gorithm can efficiently capture topological features that are not eas-
ily identified using a linear approximation. With the increasing use
of higher order element data in simulations, it is essential that the
analysis and visualization techniques are also directly applied on
the higher order elements. This is particularly true for topology-
based visualization techniques, which aim to capture and represent
key features in the data.

Appendix

We prove three lemmas that are required to show the correctness of
the algorithm.

Lemma 1 If a bivariate polynomial function f is constant over a
non-empty open subset Ω of R2, then f is constant over R2.

Proof Let x0 ∈Ω. The Taylor expansion of the polynomial function
f at x0 is

f (x) = f (x0)+
k=N

∑
|k|>0

∂
k f (x0)

(x−x0)
k

k!
,

where we use the multi-index notation, and N = (N1,N2) is the
degree of f . Since f is constant within a neighborhood of x0, we
must have ∂ k f (x0) = 0,∀k. From the Taylor expansion of f , we
conclude that f is constant over R2.

Lemma 2 If a bivariate polynomial function f is constant over a
non-empty line segment I in R2, then f is constant over its sup-
porting line l(I).

Proof Let x0 and x1 be two distinct points in I. Define a univariate
polynomial g such that g(s) = f (x0 + s(x1− x0)) for s ∈ R. The
polynomial g is constant over a non-empty open interval. An anal-
ogous argument as in the proof of the previous lemma implies that
g is constant over R. Therefore, f is constant over the line l(I).

Lemma 3 Let f be a bivariate polynomial Morse function and let
c be a critical point of f . Algorithm 1 traces at least one mono-
tone descending path from each connected component of the lower
neighborhood N−c of c.

Proof The bounding box is chosen such that no other critical point
lies within it. First, assume that the bounding box Rc is small
enough that the level set f−1(c) intersects the boundary of Rc ex-
actly zero times (for minima and maxima) or four times (for saddle
critical points). In this case, Algorithm 1 clearly traces 0, 1, and 2

MDPs for minima, maxima, and saddle critical points, respectively.
Further, the path is indeed an MDP because there exists a descend-
ing path from c to the point s on the boundary, namely the gradient
descent path (see Figure 8(a)).
Let us now consider the case when the above assumption is not true.
If c is a minimum or maximum and f−1(c) intersects the bound-
ary of Rc then there exists another critical point within Rc, a con-
tradiction. If c is a saddle point, then a configuration as shown in
Figure 8(b) may arise. In this case, fRc − f (c) will have more than
four roots and the algorithm finds a smaller bounding box.

(a) (b)

Figure 8: (a) Bounding box Rc for a critical point c showing its
neighborhood Nc. (b) A box containing c, which is larger than the
required bounding box.
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Figure 10: Visual comparison with PL approximations for the heater dataset. A 10-fold increase in number of triangles is required to obtain
similar contours for the PL approximation. (a) Close up view. Critical points computed using a PL approximation on a mesh with 12438
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