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The accurate identification of anatomical structures within volumetric data derived from medical scanning de-
vices, such as CT and MRI, is a significant aspect of clinical workflows in radiology and oncology treatment
planning. With the advance of Al and high-performance computing, many methods and tools have been de-
veloped over the past decade and a half. However, end-to-end integration of solutions with existing workflows
and practices remains a challenge. Here, we focus on the need for segmentation of anatomical structures whose
delineations are clinically defined by a combination of anatomy, function, and treatment planning. Existing
deep learning approaches for segmentation often struggle to effectively differentiate closely placed organs,
such as the bladder, rectum, and sigmoid colon. We propose an efficient and robust, organ-specific segmenta-
tion pipeline based on tailored 2D U-Net models, coupled with anatomy-guided preprocessing and geometric
postprocessing algorithms. We validate our method by a user study involving trained radiation oncologists,
demonstrating high segmentation accuracy and significant reductions in contouring time. The results show
that our approach produces consistently accurate contours that closely match expert delineations, with mini-
mal corrections needed in clinical practice. This work highlights the benefits of deep learning integration in
brachytherapy, enabling quicker planning and improved consistency through clinically validated organ seg-
mentation.

1 INTRODUCTION

Organ segmentation from computed tomography
(CT) scans is fundamental in radiation therapy pro-
cedures such as cervical cancer brachytherapy (Ma-
hantshetty et al., 2019). Accurate delineation of
organs-at-risk (OARs), including the bladder, rectum,
and sigmoid colon, is critical to ensure effective tumor
targeting while minimizing exposure to surrounding
healthy tissues (Derks et al., 2018). Despite signif-
icant technological advancements, manual segmen-
tation remains prevalent in clinical practice, posing
challenges related to inter-observer variability, labor
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intensity, and prolonged planning time. Organ seg-
mentation is a challenging problem due to the com-
plex and variable appearance of organs, variations
in imaging modalities, noise, artifacts, and anatomi-
cal differences across individuals (Skowronek, 2017).
Generalized multi-organ models often fail in the con-
text of cervical cancer brachytherapy due to inad-
equate handling of anatomical intricacies, gender-
specific differences, and inconsistencies in small-
organ segmentation (Bandyk et al., 2021; Perslev
et al., 2019).

While numerous segmentation models have been
proposed, their adoption in clinical practice remains
limited by high computational requirements and long
inference times. Our focus is on translating these
advances into a deployable tool that runs efficiently
on standard hardware while preserving segmentation
accuracy. Addressing these limitations, we intro-
duce a clinically validated, organ-specific segmenta-



tion methodology tailored explicitly for cervical can-
cer brachytherapy planning. The contributions of this
paper include:

1. Training of organ-specific neural networks with
optimized multi-stage loss functions,

2. Development of an anatomy-informed prepro-
cessing step that significantly enhances segmen-
tation precision and efficiency,

3. An interactive visualization tool that enables de-
ployment of the segmentation utility in a clinical
setting, and

4. Rigorous clinical validation through expert user
evaluations that is facilitated by inclusion of the
the visualization tool within the treatment plan-
ning workflow.

The experimental results and user evaluations high-
light the practical clinical utility and substantial work-
flow enhancements of the proposed method, resulting
in time savings of 3-4 minutes per patient. Collec-
tively, these advancements underscore the potential of
targeted deep learning solutions to streamline radia-
tion treatment planning, ultimately improving patient
care outcomes in cervical cancer brachytherapy.

2 RELATED WORK

Automated segmentation of medical images has been
widely studied, with deep learning methods becom-
ing the state-of-the-art in recent years (Huang et al.,
2024). The U-Net architecture (Ronneberger et al.,
2015), with its encoder-decoder design and skip con-
nections, has become a standard for biomedical seg-
mentation tasks. Variants such as 3D U-Net (Cigek
et al., 2016) and U-Net with ConvLSTM (Xu et al.,
2019) have been developed to incorporate spatial or
temporal context, but often require more data and
computational resources.

Prior studies (Bandyk et al., 2021; Perslev et al.,
2019) show that multi-organ segmentation networks
often under-perform on small or tubular organs due
to class imbalance and structural similarity. Focal
loss (Lin et al., 2017) and Dice loss (Sudre et al.,
2017) have been introduced to improve performance
on such difficult regions. Recent studies (Krupien
et al., 2025) on the application of deep learning mod-
els for bladder and rectum segmentation on CT data
report that a lighter UNet++ architecture performs as
well as a heavier nnU-Net (Isensee et al., 2021). No-
tably, the study adopted UNet++ (Zhou et al., 2019)
in routine practice due to its lower hardware demands,
facilitating use on standard clinical workstations. A

recent prospective study (Kraus et al., 2024) demon-
strated that auto-contouring of OARs can streamline
HDR brachytherapy planning, thereby reducing plan
approval times by approximately 19% compared to
manual contouring workflows. This indicates that au-
tomation not only maintains acceptable accuracy but
also saves time in real clinical settings.

Our approach builds on 2D U-Nets by using
organ-specific networks and a multi-stage training
schedule to improve segmentation accuracy for the
bladder, rectum, and sigmoid colon. In comparison to
the nnU-Net and UNet++ architectures, our method
produces comparable accuracy, especially in organ
boundaries, thanks to our proposed staged training
loss methodology, while using the simpler and fewer
parameter 2D U-Net architecture during inference.

3 DATASET

This study utilizes a dataset comprising 150
anonymized pelvic CT volumes, acquired from a sin-
gle clinical source and annotated for three target or-
gans: the bladder, rectum, and sigmoid colon (see
Figure 1). Each CT scan comprises between 80 and
130 2D slices. The dataset was stratified into train-
ing (100 cases), validation (20 cases), and test (30
cases) sets to support model development and evalua-
tion. The dataset was acquired over different sessions
and annotated by multiple clinicians, thus introduc-
ing variability in annotation and imaging conditions.
Slices lacking corresponding organ annotations were
excluded from all stages to maintain label integrity
and reduce class imbalance. Our dataset is compa-
rable in size to many prior brachytherapy segmenta-
tion studies (Mohammadi et al., 2021; Lempart et al.,
2022; Huang et al., 2024).

The preprocessing pipeline focused on narrow-
ing the input to anatomically relevant regions. Two
complementary techniques were employed to identify
the region of interest (ROI): a geometric method that
used positional heuristics based on pelvic bone land-
marks, and a lightweight U-Net model trained to iden-
tify probable organ locations in sagittal and coronal
views. The outputs of both methods were spatially av-
eraged to produce consistent, organ-centered bound-
ing boxes. Extracted slices were then cropped to the
ROI and resized to 128 x 128 pixels, creating a stan-
dardized input format for all segmentation models.
This preprocessing stage not only accelerates training
convergence but also improves segmentation quality
by reducing the presence of out-of-scope anatomical
structures.
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Figure 1: Volume rendering of the organs of interest and the bone structure that provides landmarks.

Load CT Scan

Detect Bounding Box

| / \

Bladder Segmentation Rectum Segmentation Sigmoid Segmentation

Bladder 2D U-Net Rectum 2D U-Net Sigmoid 2D U-Net

Aggregate Segmented Organs

Remove Disconnected Components

Locate Recto-Sigmoid Junction

Generate 3D Surface Views

Quantitative and Qualitative Analysis

Export Final Segments

Figure 2: Overall framework of our auto-segmentation tool for cervical cancer brachytherapy planning.

4 METHODOLOGY erate the final image, and generating an output format

compatible with the clinical workflow. The step-by-
The entire procedure encompasses the reception of an step description of the process is discussed in detail
input CT image, preprocessing of the data, organ pre- below. Figure 2 presents a schematic of the workflow.

diction, postprocessing of the predicted organs to gen-



4.1 Preprocess

The preprocessing of the input data consists of four
steps: reading the input file, obtaining a bounding box
via a geometric approach, obtaining a bounding box
via a machine learning (ML) approach, and finally
rectifying the box with a user adjustment if needed.

4.1.1 Reading input file

The input CT volume (in DICOM .dcm format) is
first converted to the VTK format for visualization
and processing (Anderson et al., 2021). During this
conversion, an anisotropic scaling is applied to adjust
voxel dimensions: we scale the data by a factor of
3 along the z-axis (transverse plane) while keeping a
scale of 1 along the other axes. This ensures that the
data has uniform aspect ratio for subsequent process-
ing and visualization.

4.1.2 Computing bounding box (geometric)

As discussed earlier, our approach uses a coarse
bounding box to isolate the organs of interest. The
geometric method leverages anatomic structures of
the bones as fixed reference points to approximate
the location of the organs of interest.

Bone using isovalue: We extract the bony structures
by thresholding the CT image at an intensity (HU)
range of 150 to 2000. All voxels within this “bone”
range are set to 1 (foreground) while others are set
to 0. This also captures any densely radio-opaque
devices (e.g., brachytherapy applicator needles)
present in the scan. However, the algorithm is not
designed to handle large foreign objects other than
bones; the presence of such objects could introduce
confusion since their positions are not fixed such as
the skeletal anatomy.

Components: For every slice along the z-axis, we
identify all sizable disconnected components that
exhibit sufficient density. These heuristic criteria
ensure that we focus on anatomical structures as
opposed to elements such as the scanning table
and surgical instruments. The criteria employed
to determine the inclusion of a component is as
follows: 20 < h,w < 140 and '4lArea ~ (15 where
h,w is the height and width of the bounding box
of the component, and totalArea is the area of all
components.

Starting axial extent (zp,i,): When the number of
bones in a slice is more than 4, we can consider
taking slices (transverse plane) as we will have

six disconnected bone segments of the femur and
os-coxa. Figure 3 illustrates the identification of the
starting slice.

Sagittal extents (xpin,Xmax) and coronal extents
(Vmin, Ymax)- . Next, we determine the ROI extents
in the other two planes (sagittal and coronal ). We use
the os coxae, bladder, and coccyx as anatomical land-
marks for this purpose (Figure 3). Notably, although
the bladder is not a bone, its thick muscular wall often
produces intensities within the bone isovalue range,
causing it to appear in the thresholded image.

In the sagittal view (X-axis), the vertical span
of the bladder provides the approximate anterior-
posterior range of the ROI; in the coronal view
(Y-axis), the ROI extends from the top of the bladder
down to the top of the coccyx. To identify the bladder
in the thresholded volume, we first locate the left and
right os coxae (pelvic hip bones) as the components
to the extreme left and extreme right, respectively.
We then locate the connected component whose
upper region lies above the midpoint between these
two bones (excluding the bones’ components them-
selves); this component is imputed as the bladder.
Among all slices containing the bladder, the slice
with the highest superior boundary (the topmost blad-
der slice) is denoted as LB and marks the superior
extent of the bladder. The coccyx is identified on
this LB slice as a small, low-lying bone component
inferior to the bladder and near the midline. For
this detection, we temporarily lower the minimum
component size threshold to 3 pixels in height/width,
since the coccyx is much smaller than other bones.
The superior surface of the coccyx on the LB slice
provides the inferior (caudal) bound (ynax) for the
ROI in the coronal plane.

Ending axial extent (z,ax): Moving onward from the
starting axial extent (zmin), we mark the slice at which
the number of detected bone components drops be-
low two. At that point, the pelvic bones have largely
disappeared (only the lumbar spine remains visible),
indicating that we have passed the region containing
the organs of interest. We consider that slice to be the
ending (top) slice of the ROL

4.1.3 Computing bounding box (ML)

We create our dataset using the labeled data for the
ML approach. In the sagittal plane, we mark rect-
angles bounding the organs, obtain the ranges from
the labels provided and convert the layers to 128 x
128 image. We used U-Net to predict the boundary
from layers and resized the image to its original size,
as shown in Figure 4. The predicted boundary is not
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Figure 3: Organs that specify the (left) starting axial extent and the (right) sagittal and coronal extents.

always perfect. We compute the rectangle using an
implementation of the Ramer-Douglas-Peucker algo-
rithm (Ramer, 1972; Douglas and Peucker, 1973; Vis-
valingam and Whyatt, 1990) from OpenCV (approx-
PolyDP).

Next, we get the coordinates of the Y-axis and Z-
axis from the rectangles as we are performing the pro-
cess on X-axis (saggital plane). We consider a plane
with a bounding box if we get four points from the
Douglas-Peucker algorithm. We can get y-min, y-
max, z-min and z-max from the four points for the
particular slice. If we store all valid Y-Z ranges, we
will have many outliers, we can remove the outliers
using the median absolute distance to the median. Af-
ter removing outliers we compute the average of the
remaining points.
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Figure 4: Computing bounding box using predicted bound-
ary.

We use the same approach for predicting X-axis
or sagittal plane range by taking slices in the coronal
plane or Y-axis. The mean absolute error for the ML
and the geometry integrated approaches are as shown
in Table 1.

4.2 Training of organ-specific models

The core segmentation models are trained in an organ-
specific manner. As discussed in the earlier sections,
we constrain the training data to each organ’s own
ROI (in the transverse plane for rectum and sigmoid,
focusing as closely as possible on each organ to im-
prove predictions). For each organ, we compute its
bounding box from the ground truth labels (using a
similar approach as the preprocessing above) and ex-
tract only the slices within that range for training data.

We train four separate 2D U-Net models for seg-
menting the target structures, each focused on a spe-
cific organ or orientation: a bladder model (trained on
all transverse slices containing the bladder, within its
ROI), a rectum model (trained on the transverse slices
spanning the rectum from its start to end), a sigmoid
colon model (trained on the transverse slices cover-
ing the sigmoid colon’s extent), and a combined rec-
tum+sigmoid model (trained on sagittal-plane slices
capturing the entire continuous rectum-sigmoid struc-
ture). All training images and corresponding label
masks were cropped and resized to 128 x 128, and
all models use a U-Net architecture operating on this
resolution.

To further improve performance, we employed a
multi-stage training schedule with progressively spe-
cialized loss functions. Training was carried out
in four sequential stages: first using binary cross-
entropy (BCE) on a dataset of 4000 sample slices
for 37 epochs, then BCE on 1000 samples for 100
epochs, followed by binary focal cross-entropy on
2000 samples for 50 epochs, and finally using a Dice
loss on 400 samples for 10 epochs. This staged ap-
proach starts with a broad learning phase (many sam-
ples, simpler loss) and gradually fine-tunes the model
with more focused losses on curated subsets, which
we found helped refine the segmentation boundaries.

After the initial BCE-only training stages, the
predicted organ contours tended to have somewhat
blurred boundaries, making it sometimes unclear
which parts were inside the organ region of inter-



Table 1: Mean absolute error for the ML and geometry integrated approaches.

MAE | xmin xmax ymin ymax zmin zmax
ML 732 497 423 283 236 1.55
ML+Geom | 3.61 3.17 423 283 236 1.55
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Figure 5: Prediction using BCE-only training (left), prediction after final stage with Dice loss (centre), and ground truth (right).

est (Figure 5). However, by the final stage of train-
ing (with Dice loss) the predictions sharpened signif-
icantly, yielding contours much closer to the ground
truth.

4.3 Prediction of the organs

During inference, we first obtain the ROI bounding
box for each organ using the preprocessing pipeline
(with manual fine-tuning of the box if necessary). All
three organs share the same in-slice cropping dimen-
sions (height and width) in the transverse plane. How-
ever, we allow separate starting and ending slice in-
dices for the rectum and sigmoid in the axial (trans-
verse) direction to help focus each prediction. No-
tably, if the rectum and sigmoid are given identical
axial slice ranges (i.e., Zmin and Zmax are the same
for both), the model predictions for rectum and sig-
moid will overlap throughout that region—since the
two structures are contiguous, a CNN that does not in-
herently distinguish them will label the entire shared
region for both organs. In practice, providing distinct
axial slice bounds for rectum and sigmoid (based on
anatomy, or by splitting at the recto-sigmoid junction
in a postprocessing step) ensures that the model fo-
cuses on the appropriate portion of each organ.

For generating the final segmentation, we run all
four trained models on their respective target regions
(one for bladder, one for rectum, one for sigmoid, and
one for rectum+sigmoid sagittal). In our experiments
we utilized all these models to validate the approach,
though in a practical deployment one could use only
the sagittal-plane rectum-+sigmoid model to directly

produce a combined mask for those two organs.

4.4 Postprocessing

For further improvement of the result, we provide two
geometric algorithms: removing disconnected com-
ponents, and prediction of the recto-sigmoid junction.

4.4.1 Removing disconnected components

The raw predictions for each organ can sometimes
contain small spurious regions or isolated blobs
that are not part of the main organ structure. We
eliminated these by performing a 3D connected-
component analysis on each predicted organ mask
and filtering out small disconnected components. In
our implementation, all connected components for
each organ are identified and their voxel counts com-
puted. A clinician can then interactively review and
discard components below a certain size threshold
(via our visualization software), or this step can be
automated by removing all components smaller than
a fixed percentage of the largest component. After fil-
tering, we reconstruct the final organ volume by com-
bining only the retained components. This step effec-
tively removes prediction noise while preserving the
structure of the organ.

4.4.2 Prediction of a Recto-Sigmoid junction
slice

As discussed, the segmentation model does not in-
herently delineate the junction between the rectum
and sigmoid colon, often producing a continuous con-



nected mask for these two organs. We therefore ap-
ply a postprocessing algorithm to estimate the recto-
sigmoid junction as a slice and split the segmenta-
tion accordingly. During our development, we con-
sidered three different anatomical formations to esti-
mate a recto-sigmoid junction slice: (1) using the dis-
tance of the recto-sigmoid prediction from the sacrum
bone, (2) using the cross-sectional radius of the recto-
sigmoid prediction, and (3) using the angle of the cen-
terline of the recto-sigmoid prediction relative to the
axial plane. Based on discussions with experts and
early experiments, we narrowed down on the third
method. (Figure 6 illustrates these anatomical con-
siderations for ).

In our chosen method, we first compute the cen-
ter of mass of the segmented rectum-sigmoid region
on each axial slice. Connecting these center points,
we form an approximate centerline curve of the or-
gan. We then calculate the angle that this center-
line makes with respect to the axial plane (essen-
tially, the tilt of the organ’s trajectory between con-
secutive slices). The recto-sigmoid junction mani-
fests as a noticeable change (drop) in this angle as
we move along the slices. To reduce noise, we apply
a Savitzky—Golay filter (Savitzky and Golay, 1964) to
smooth the angle-vs-slice curve. We provide 5 op-
tions to the user on this curve to select the junction
slice (as detailed in Algorithm 1 above): for exam-
ple, detecting the largest instantaneous angle drop, the
largest drop in the smoothed curve, the largest change
in the discrete derivative of the smoothed curve, the
first major bend (local maximum of the slope curve),
and a fixed angle threshold (e.g., first slice where the
angle falls below 76°, based on empirical observation
from ground truth data).

In our experiments, at least one of these options
typically produced junction estimates within a few
slices of the true junction. We found that the combi-
nation of all five approaches yielded a mean absolute
error of about 1.95 slices in locating the junction. To
decide on a final junction, we evaluated a small set of
sample cases using all five criteria and selected the
criterion that performed best (closest to the expert-
defined junction) for each case. The frequency with
which each method was selected as best is given in
Table 2. In our sample of cases, the centerline angle-
based criterion (method 3) most often provided the
most accurate junction slice.

S EVALUATION

For evaluating the different models, we used the 30
test CT images and used DICE score to evaluate.

1: Input: Segmented rectum+sigmoid volume /
2: Output: {z1,22,23,24,25 } (junction slice
candidates)
I, + removeSmallComponents(I)
Slopes + slopeO fMidpoints(I;) {centerline
angle per slice}
Slopesgmoorn < savgolFilter(Slopes)
dSlope + discreteSlope(Slopessmoorn)
dSlopesmoorn < savgolFilter(dSlope)
z1 < maxDrop(Slopes)
2 maXDrop(Slopessmoozh)
3 maxDrop(dSlopesmooth)
24 < maxima(dSlopesmoon)[0] {first local
maximum }

12: z5 < indexO f(Slopesgnoorn < 76°)

13: return {z1,22,23,24,25}
Algorithm 1: Recto-Sigmoid Junction Slice Predictions

bl
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Approach | 1 2 3 4 5
Frequency | 0.16 0.16 0.30 0.11 0.25
selected

Table 2: Frequency at which an approach (1-5) is selected
as most accurate for recto-sigmoid junction localization in
sample tests. The angle-based approach (3) was most fre-
quently identified as optimal.

Table 3 summarizes a comparative analysis of dif-
ferent training methods. Specifically, we study the
effect of including vs. removing unlabeled slices on
Binary Cross Entropy (BCE). We also observe an im-
provement upon including dice loss. In all methods,
sharpness of the boundary is enhanced by setting val-
ues 0.4 and above to 1. Note that DICE score ranges
between 0 and 1, where higher scores corresponds to
better results. In Table 4, we compare the individ-
ual training stages for different organs. Stage 1 and
stage 2 uses BinaryCrossentropy, stage 3 uses Bina-
ryFocalCrossentropy, stage 4 uses relaxed Dice Loss.
We also compute the Dice scores after postprocessing
for comparison.

Figure 7 shows some 2D output of interest for the
bladder, rectum, and sigmoid. Figure 8 shows results
in 3D, comparing the ground truth vs. the predicted
segmentation.

6 IMPLEMENTATION AND
VISUALIZATION

We have developed a user-friendly software interface
to deploy the segmentation tool in a clinical setting.
The application is implemented in Python and C++,
and it integrates with the 3D Slicer (Kikinis et al.,
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Figure 6: Anatomical formations considered for developing an algorithm to determine recto-sigmoid junction slice.

Model / Training Strategy

Single U-Net (no organ-specific ROI), all slices

Organ-specific U-Nets (no unlabeled slices removed)
Organ-specific U-Nets (unlabeled slices removed)
Organ-specific U-Nets (unlabeled removed, multi-stage

losses)

\ Loss Accuracy  Dice
Cat. CrossEntropy 0.9512 0.7900
Binary CrossEntropy 0.9724 0.8900
Binary CrossEntropy 0.9919 0.9882
BCE + Focal + Dice 0.9937 0.9898

Table 3: Comparing training approaches. Removal of slices without organ labels and using specialized per-organ models
greatly improved segmentation performance. Multi-stage training (with focal and Dice losses) provided a further gain in

Dice.
Organ (plane) \ Stagel Stage2 Stage3 Stage4 Postproc
Bladder (axial) 0.9826 0.9929 09822 09813  0.9882
Rectum (axial) 0.9826 0.9919 0.9897 0.9886  0.9891
Sigmoid (axial) 0.9904 0.9968 0.9927 0.9899  0.9886
Rectum+Sigmoid | 0.9882 0.9932 0.9911 0.9897  0.9915
(sagittal)

Table 4: Dice scores across training stages for each organ. Stagel/Stage2: Binary CrossEntropy; Stage3: Focal loss; Stage4:
Dice loss. Postproc indicates after applying the geometric postprocessing steps.

2014) platform for visualization. Key features of the
interface include real-time rendering of the segmented
organs as smooth 3D surfaces (Figure 9), interactive
adjustment of the ROI bounding box, and options to
include or exclude specific segmented components.

6.1 Software workflow

Upon loading a patient’s CT scan (DICOM format),
the software automatically performs the preprocess-
ing steps to compute the ROI. Next, it applies each
organ-specific model to generate the bladder, rectum,
and sigmoid segmentation masks. The results are dis-
played to the user with support to inspect and adjust
the results as necessary. The user may leverage the
disconnected component analysis to identify and re-
move small stray segments using a simple click inter-
face. The segmented organs can be exported as stan-
dard DICOM RT-Structure files for use in treatment
planning systems.

6.2 Surface visualization

The segmented organs are visualized as smooth tri-
angulated surfaces as compared to raw voxel grids,
which makes it easier for clinicians to interpret the
results. This surface is computed using an acceler-
ated marching cubes algorithm (Lorensen and Cline,
1987) followed by a surface smoothing operation,
which enhances the clarity of organ boundaries and
their spatial relationships. The surface rendering is
updated live in response to user adjustments.

6.3 Computation and runtime

The segmentation models were run on a system with
an NVIDIA GTX 1060 GPU with 6GB VRAM and
32GB RAM. Typically, the segmentation for all three
organs is obtained in 3—4 seconds per patient scan.
The efficient runtime is achieved due to the relatively
small ROI computed in the pre-processing step and
the efficiency of the 2D U-Net models. Even on a
modest workstation without a powerful GPU, the seg-
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Figure 7: Predicted vs. ground truth for 2D slices.

Figure 8: Predicted vs. ground truth (blue) 3D segmenta-
tion. The predicted organs are in green (bladder), light red
(rectum), and dark red (sigmoid).

mentation is computed within tens of seconds, mak-
ing it feasible for clinical use.

6.4 Export and integration

The software includes functionality to export the fi-
nal segmentation in DICOM RT-Struct format, which
can be directly imported into brachytherapy planning
systems. This allows the auto-segmented contours to
be used in dose calculations and treatment planning
immediately. The goal is to integrate this tool as a
plugin or a standalone module in the clinical work-
flow so that oncologists can generate organ contours
at the time of planning with minimal overhead.

7 CLINICAL FEEDBACK

To evaluate the clinical relevance and real-world
usability of our segmentation framework, we con-
ducted a structured user study involving five clini-
cians—two senior consultants and three resident doc-
tors—focused on organ contouring for cervical can-
cer brachytherapy planning. Each participant seg-
mented the bladder, rectum, and sigmoid colon across
a dataset of 20 CT scans, both manually and us-
ing our prototype auto-segmentation tool. Figure 10
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Figure 9: Interactive visualization of the 3D organ segmentation supports user feedback and proofreading.
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Figure 10: Clinical workflow for evaluating the proposed auto-segmentation tool

shows the workflow given to all participants of the
user study. On average, manual delineation by the
doctors took about 7 minutes and 51 seconds per case,
(ranging between 4 minutes and 14 minutes and 30
seconds) with junior doctors generally taking longer
than seniors. In contrast, our software produced con-
tours and were integrated into a treatment planning
software to produce a treatment plan in 3 minutes and
38 seconds on average per case (ranging between 3
minutes to 5 minutes and 30 seconds). This translates
to approximately a two-fold increase in speed, saving
around 3—4 minutes per patient compared to manual

work. A key contributor to this time reduction is the
integrated interactive visualization interface, which
allows clinicians to quickly review and correct spe-
cific regions directly within the tool. This ensures
that any segmentation inaccuracies can be rapidly re-
solved before export, without requiring a complete
manual re-contouring.

Overall, these findings indicate that the auto-
segmentation software can generate usable organ con-
tours in roughly half the time of manual segmentation.
This improvement in efficiency—achieved without
sacrificing contour accuracy or consistency—could



free up several minutes per patient for clinicians and
help standardize the contouring process in practice.

One of the senior consultants provided qualitative
feedback stating: “This software significantly speeds
up the contouring process compared to manual meth-
ods, which is highly beneficial in improving workflow
efficiency. However, it currently generates the same
volume for both the rectum and sigmoid, which is
not accurate. In manual contouring, the volumes of
these two structures typically differ due to their dis-
tinct anatomical shapes and positions on CT images.
The software may require some improvements to ad-
dress this issue. The volume similarity might be re-
lated to how the algorithm processes and differenti-
ates the structures. Additionally, the output may vary
depending on the computer’s processing speed, so op-
timizing the software for consistent and accurate per-
formance across different systems would be advan-
tageous.” Reflecting on the above observation, we
note that the geometric postprocessing incorporated
into the method does ensure accurate location of the
recto-sigmoid junction. In practice, applying this step
resolves the volume similarity, ensuring that the final
contours align with expected clinical anatomy. This
step remains a major contributor to the time required
for contouring.

8 CONCLUSIONS AND FUTURE
WORK

We presented an effective and clinically validated
tool for fast and accurate segmentation of pelvic or-
gans in cervical cancer brachytherapy. Our organ-
specific approach achieves high accuracy while sig-
nificantly reducing segmentation time. Specifically,
the use of tailored 2D U-Net models for each organ
enabled rapid predictions (3—4 seconds per scan) suit-
able for clinical workflows. By focusing the segmen-
tation on anatomy-specific regions through prepro-
cessing and ensuring that each model operates within
the region of interest, we improved both accuracy and
efficiency. We also addressed the challenge of contin-
uous anatomical structures (like the rectum and sig-
moid colon) by applying geometric postprocessing
to successfully separate and delineate them. A pre-
liminary user study with radiation oncologists con-
firmed the clinical acceptability of the segmentation.
The clinical evaluation demonstrated substantial time
savings (approximately 50% reduction in contouring
time) and improved consistency of organ contours
among different clinicians. Moreover, the system runs
on modest hardware, facilitating easy integration into
existing clinical setups.

For future work, we plan to further enhance the
ability of the model to differentiate the rectum and
sigmoid, possibly by integrating the junction detec-
tion directly into the learning process or by train-
ing specialized models for different portions of the
anatomy. We also aim to expand and validate our ap-
proach on larger datasets from multiple institutions to
ensure its robustness and generalizability. Finally, in-
corporating additional organs or extending the frame-
work to other treatment sites could broaden the appli-
cability of the tool.

Overall, our results highlight that organ-specific
deep learning models, combined with intelligent pre-
processing and postprocessing, can streamline the
treatment planning workflow in brachytherapy, pro-
viding faster and more consistent organ delineations
to ultimately improve patient care.
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