
Efficient Homology Computations on Multicore and
Manycore Systems

A PROJECT REPORT

SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Technology

IN

Computational Science

by

Naredla Anurag Murty

Supercomputer Education and Research Centre

Indian Institute of Science

BANGALORE – 560 012

JULY 2013

1

©Naredla Anurag Murty

JULY 2013
All rights reserved

For Mummy, Nanna and Arat just because they are who they are

i

Acknowledgements

I think, therefore I am... I think.

fortune

First and foremost, I would like to thank Huzur for all the strength and inspiration HE has

always given me.

It was my great fortune to be advised by Professors Vijay Natarajan and Sathish Vadhiyar

without whose guidance this work would not have been possible. It was really encouraging to

have patient listeners every Friday for my ideas – sometimes ludicrous, sometimes less so. I

have learnt a lot from my guides, and not all of this learning has to do with topology or high

performance computing!

Ankit has been by far the most helpful person I have ever met; I have had among the most

meaningful of discussions with this Haryanvi brother. He has been great in times of need and

I know this is going to stay the same even after he joins IIT-D. From Mohit, also a Haryanvi

brother, I learnt what focus and determination really mean – be it computer science, fruits,

what have you. The long bicycle rides with both of them to places as near as BEL road and

as far as Whitefield are probably the things I will miss the most about my stint here. And

obviously my roomie for one semester, Anirudh, for the music, the humour and for being an

elder brother to me. I need to thank my GARL-friends Sai, Vivek and Vasu for helping me out

with GPUs and for not mocking my sometimes rustic approach to programming.

Nithin has been extremely helpful throughout with C++(REDHOM), topology and stuff

pertaining to the latest TV series and green tea! I would also like to acknowledge the help

provided by Preeti whenever I was stuck in the project. With my VGL labmates (Vidya, Nithin

and Preeti), copious amounts of coffee have been consumed both at CEDT and Prakruthi with

ii

iii

interesting conversations during the walks.

I am proud to be part of our SERC MTech batch and for the many assignments we com-

pleted together in Room no. 303.

I would like to thank Sahej, Rachana, Ashu, Parijat, Agam, Mohan and of course, Smriti

for waking me up before the meetings and the presentations and making me more nervous than

I already felt. Friends like you are the reason life at IISc was this awesome.

And finally I am grateful to Donald Knuth for his splendid set of books on computer pro-

gramming which I someday hope to comprehend..

Abstract

Homology computations form an important step in topological data analysis that helps to iden-

tify connected components, holes, and voids in multi-dimensional data. Our work focuses on

algorithms for homology computations of large simplicial complexes on multicore machines

and on GPUs. This paper presents two parallel algorithms to compute homology. A core com-

ponent of both algorithms is the algebraic reduction of a cell with respect to one of its faces

while preserving the homology of the original simplicial complex. The first algorithm is a par-

allel version of an existing sequential implementation using OpenMP. The algorithm processes

and reduces cells within each partition of the complex in parallel while minimizing sequential

reductions on the partition boundaries. Cache misses are reduced by ensuring data locality

for data in the same partition. We observe a linear speedup on algebraic reductions and an

overall speedup of upto 4.9× with 16 cores and 7.2× with 32 cores. The second algorithm is

based on a novel approach for homology computations on manycore/GPU architectures. This

GPU algorithm is memory efficient and capable of extremely fast computation of homology

for simplicial complexes with millions of simplices. We observe up to 40× speedup in runtime

over sequential reductions and up to 4.5× speedup over REDHOM library, which includes the

sequential algebraic reductions together with other advanced homology engines supported in

the software.

iv

Contents

Acknowledgements ii

Abstract iv

1 Introduction 1

2 Background 4

3 Related Work 11

4 Homology Computations on Multicore Systems 13

4.1 Sequential algorithm for algebraic reductions 14

4.2 Multicore algorithm for algebraic reductions 15

5 Homology Computations on Manycore/GPU Systems 19

5.1 Important steps in the GPU algorithm . 19

5.2 Illustrative example . 26

6 Experiments and Results 29

6.1 Multicore . 29

6.2 GPU . 31

7 Conclusions and Future Work 34

Bibliography 35

v

List of Figures

2.1 (a) A valid simplicial complex of dimension 2 (b) An invalid simplicial com-

plex since A and B do not intersect on an edge or a vertex. 5

2.2 The torus has one connected component, two tunnels and one void 6

2.3 Step-by-step algebraic reductions of a simplicial complex [Red(b, a) means

the reduction of cell b with respect to face a] 9

4.1 Intermediate steps in REDHOM are disabled to focus on reductions 13

4.2 Timings for various functions in homology computations using sequential al-

gebraic reductions . 14

4.3 Intermediate steps in reductions of the partitions by different threads. Different

colours represent the partitions reduced by the threads. The boundary elements

are shown in red and are not reduced in the parallel phase. 17

4.4 Intermediate steps of the sequential reduction phase. The partitions are merged

in this case and sequential reductions are performed subsequently. 18

5.1 A series of bad choices for reductions; internal cells are chosen at each step

causing a large number of boundaries and coboundaries to be modified 22

5.2 Better order for reductions which chooses boundary cells for reduction at each

step . 23

5.3 Phases of race-prioritycheck-check . 25

vi

LIST OF FIGURES vii

5.4 Each row denotes a single iteration of the GPU algorithm: In the first column,

increasing order of reduction costs is grey, yellow, pink and brown. In the

second column, we show the cells to be reduced in purple, and the green cells

are the locked neighbours of cells being reduced. The orange cells are not

reduced in this iteration. In the third column, we show the structure of the

complex after the iteration. 27

5.5 Fig 5.4 (contd.) . 28

6.1 Parallelization results for dataset SYNTH using multicore reductions 30

6.2 Total times taken (including pre-processing step) with increasing number of

cores . 30

6.3 Speedup of average GPU timings with respect to sequential algebraic reductions 32

6.4 Comparison of average GPU timings with optimized REDHOM , which in-

cludes the sequential algebraic reductions together with other advanced ho-

mology engines supported in the software. 33

Chapter 1

Introduction

Topology is the study of the connectivity of space and provides useful tools for analyzing

datasets by enabling the abstract representation of features in the data.. Topological data anal-

ysis finds numerous applications in neuroscience, astrophysics, image analysis, and nonlinear

dynamics [1–6]. All of these applications are characterised by very large data sizes from which

topological data analysis reveals underlying patterns and structure. This structure is extracted

in the form of connected components, holes, and voids of higher dimensions along which the

data aligns itself in space. The characterization of these connected components, holes, voids,

and their higher dimensional equivalents is more formally described by the notion of homol-

ogy. Computing homology requires the construction of a combinatorial representation of the

space such as a simplicial complex.

An interesting application of homology computations is the detection of holes in the cov-

erage of a sensor network [7]. Hole detection is useful in cell-phone communications, beacon

navigation and some problems in security and defense. These type of applications require

real-time computation of homology. The requirement for real-time computations and increas-

ingly large datasets highlight the need for fast and memory-efficient algorithms for homology

computations. This serves as our primary motivation for developing parallel algorithms for

homology computations.

We present parallelization strategies for fast computation of homology on multicore and

manycore GPU systems. The algorithm we consider for parallelization uses the method of

1

CHAPTER 1. INTRODUCTION 2

algebraic reductions to reduce the size of the input space while maintaining its homology [8].

For implementation on multicore architectures, the algebraic reduction step in REDHOM is

parallelized using OpenMP [9]. We decompose the complex and perform parallel reductions

on the different partitions while keeping the boundaries between partitions intact. The next

step involves algebraic reduction of the unreduced boundary cells sequentially to compute

homology.

The above idea does not scale well for higher degrees of parallelism as in the case of

GPU architectures. So we describe a different algorithm amenable to massively parallel ar-

chitectures. Each GPU thread attempts to perform an algebraic reduction but this is possible

only when certain conditions involving its neighbours are met. Moreover, it is observed that

construction of the entire simplicial complex is not necessary for performing algebraic reduc-

tions. This observation speeds up homology computations and leads to a memory-efficient

algorithm. Finally, we define a cost function that enables us to perform reductions in a load-

balanced manner. Implementation of this algorithm gives up to 40× speedup over sequential

algebraic reductions. We also obtain up to 4.5× speedup over REDHOM, which implements

among the fastest sequential algorithms for homology computations.

Primary contributions of this work are:

1. A multicore algorithm for fast homology computations.

2. Modifications to sequential algebraic reductions using OpenMP that improve the perfor-

mance by up to 4.9× with 16 cores and 7.2× with 32 cores.

3. A memory-efficient GPU algorithm based on algebraic reductions that gives up to 40x

speedup over the sequential algorithm and up to 4.5× speedup over homology compu-

tations in REDHOM library.

4. A novel cost assignment scheme to ensure load-balanced execution and to ensure that

only low-cost reductions are performed in a given iteration.

Chapter 2 provides the required background and definitions especially focusing on alge-

braic reductions. Chapter 3 is a literature survey of prior research in this area. Chapters 4

CHAPTER 1. INTRODUCTION 3

and 5 provide detailed descriptions of the proposed algorithms for homology computations on

multicore systems and GPUs respectively. Experimental results are presented in Chapter 6 and

Chapter 7 presents possible directions for future research.

Chapter 2

Background

Topology is the study of properties of spaces that are invariant under continuous deformations

or more formally, homeomorphisms. A finite representation of topological spaces is required to

compute these topological invariants. An example of such a finite representation is a simplicial

complex. We present below a few definitions that are required to describe our methodology.

For a more mathematical treatment, we refer the reader to the texts by Zomorodian [10] and

Munkres [11].

Simplicial complexes and simplicial homology. A k-simplex σ is the convex hull of a set

A of k + 1 independent points in Rd, for 0 ≤ k ≤ d. We use the terms vertex for 0-simplex,

edge for 1-simplex, triangle for 2-simplex and tetrahedron for 3-simplex. A simplex σ′ is

a face of a simplex σ if σ′ is contained in σ. A simplicial complex, K, is a finite set of

simplices satisfying two properties : (i) if σ ∈ K and τ is a face of σ then τ ∈ K and (ii)

if σ ∈ K and σ′ ∈ K, then σ ∩ σ′ is either φ or a face of both σ and σ′. Fig 2.1(a) shows

a valid simplicial complex whereas the collection of simplices in Fig 2.1(b) does not satisfy

property (ii) and is thus not a simplicial complex. The dimension of K, d(K) is defined as the

maximum dimension of a simplex in K.

A k-simplex σ can be represented as the set of its vertices [v0, v1, . . . , vk−1]. For instance,

a triangle with vertices A, B, and C can be represented as [A,B,C]. The boundary of a

k-simplex is formed by the (k − 1)-simplices bounding it. In our example, the boundary

of [A,B,C] are the three edges [A,B], [B,C] and [C,A]. The boundary of a k-simplex

4

CHAPTER 2. BACKGROUND 5

(a) (b)

Figure 2.1: (a) A valid simplicial complex of dimension 2 (b) An invalid simplicial complex
since A and B do not intersect on an edge or a vertex.

σ = [v0, v1, . . . , vk−1] is defined as the formal sum ∂σ =
∑

i−(1)i[v0, v1, . . . , v̂i, . . . , vk−1].

A minus sign in this sum basically means including the same simplex but with the opposite

orientation i.e., with any two of the vertices interchanged. Simplices with opposite orientations

cancel each other out. The coboundary of a k-simplex σ′ is the set of all k+1-simplices that

have σ′ as a face. If a simplex σ′ lies in the boundary of σ, then σ′ lies in the coboundary of σ′.

For instance, in Figure 2.1(a), ∂A = 3+ 4+ 5 and ∂B = 5+ 6+ 7. The coboundary of edges

1 and 2 is {φ}. The coboundary of edges 3 and 4 is {A}, and that of 6 and 7 have coboundary

{B}. Edge 5 has {A,B} as its coboundary.

A fundamental property of boundaries is that the boundary function applied twice is zero.

In the above example, ∂∂[A,B,C] = ∂([B,C]+[C,A]+[A,B]) = [B]−[C]+[C]−[A]+[A]−

[B] = 0. We define a k-cycle as any formal sum of simplices whose boundary is zero. Due

to property of boundaries, all boundaries are cycles. However, not all cycles bound a higher

dimensional simplex. For instance, if our original simplicial complex had the edges [B,C],

[C,D] and [D,B] but not the triangle [B,C,D], the boundary of [B,C] + [C,D] + [D,B] is

CHAPTER 2. BACKGROUND 6

Figure 2.2: The torus has one connected component, two tunnels and one void

∂([B,C] + [C,D] + [D,B]) = [B] − [C] + [C] − [D] + [D] − [B] = 0. The edges [B,C],

[C,D] and [D,B] form a cycle that is not a boundary of any triangle.

The homology of a simplicial complex deals with counting the number of independent

cycles that do not bound any set of simplices in a higher dimension. The homology in orders

0, 1 and 2 represent the number of connected components, tunnels, and voids respectively, and

are represented as algebraic groups. In this paper, we are interested in computing the rank of

these groups and we refer to these computations as homology computations. For example,

homology computations identify one connected component, two independent tunnels and one

void in the simplicial complex that represents a torus in Figure 2.2. For ease of description,

computations are performed modulo 2 which gives us the Z2 homology [10].

One method to identify the tunnel in Figure 2.1(a) is using the ranks of boundary matrices.

To identify the tunnel, we construct boundary matrices of ranks one and two. The columns

of the boundary matrix of dimension d represent the d-dimensional simplices while the rows

CHAPTER 2. BACKGROUND 7

represent the d-1-simplices on their boundaries. We assume that edges are directed from the

lower alphabet to the higher alphabet. All the faces are consistently assumed to have counter-

clockwise orientation. Using these orientations, the boundary matrices are :



A B

1 0 0

2 0 0

3 −1 0

4 1 0

5 1 −1

6 0 −1

7 0 1


Boundary matrix for 2-simplices



1 2 3 4 5 6 7

a 1 1 0 0 0 0 0

b −1 0 1 1 0 0 0

c 0 0 0 −1 1 0 1

d 0 −1 −1 0 −1 1 0

e 0 0 0 0 0 −1 −1


Boundary matrix for 1-simplices

There are 2 independent boundaries as computed from the rank of the boundary matrix for

2-simplices. Also, the dimension of the nullspace of the second boundary matrix is 3, which

gives us the number of independent cycles in the simplicial complex being considered. So

we subtract the boundaries from the number of cycles to get one non-bounding cycle which

represents the tunnel we see in Figure 2.1(a).

The matrix based method for homology computations is similar to Gaussian eliminations

and has exponential complexity. The number of computations is cubic but the increase in size

CHAPTER 2. BACKGROUND 8

of the entries gives rise to the exponential complexity. Therefore, other methods for homology

computations are considered. One such method is that of algebraic reductions, described next.

Algebraic reductions. Consider the simplicial complex in Figure 2.1(a) . It consists of one

connected component and contains one tunnel. Clearly, we can construct a smaller sized com-

plex representing one component and containing one tunnel. Reduction algorithms reduce the

size of a simplicial complex in a way such that homology remains unchanged.

We focus on algebraic reductions to reduce the size of the complex [8]. Initially, each

dimension d of the simplicial complex consists of the set of all the d-simplices. During the

reduction procedure, d-simplices can merge to form d-cells, which can be thought of as more

general versions of simplices. For example, vertices are 0-cells, edges are 1-cells, polygons

are 2-cells and 3-D polytopes are 3-cells. In any intermediate step of the procedure, dimension

d consists of the set of all the d-cells.

For two cells u,v of the same dimension, we define 〈u, v〉 to be 1 when u = v and 0

otherwise. After the algebraic reduction of cell b of dimension m with respect to its face

a in dimension m-1, the new boundary maps are given by Equation 2.1, where addition is

performed modulo 2.

∂v =


∂v, if d(v) /∈ {m,m+ 1},

∂v + 〈∂v, a〉∂b, if d(v) = m,

∂v + 〈∂v, b〉b, if d(v) = m+ 1.

(2.1)

After the reduction, b and a are removed from the complex. This reduction operation

is guaranteed to preserve the homology of the complex. In the end, the number of cells in

dimension d that are irreducible is equal to the homology of order d.

Figure 2.3 illustrates an example algebraic reduction. The input is a simplicial complex

with one connected component and one tunnel. Initially, the cells in various dimensions just

consist of the simplices. The cells are as follows:

dimension− 0 : {a, b, c, d, e}

dimension− 1 : {1, 2, 3, 4, 5, 6, 7}

dimension− 2 : {A,B}

CHAPTER 2. BACKGROUND 9

Figure 2.3: Step-by-step algebraic reductions of a simplicial complex [Red(b, a) means the
reduction of cell b with respect to face a]

CHAPTER 2. BACKGROUND 10

First, face B is reduced with respect to edge 5. After this reduction, face A no longer remains

a simplex. It becomes a cell with boundary {3, 4, 6, 7}. Subsequent reductions reduce face

A with respect to edge 7, and the edges 6, 2, and 1 with respect to the vertices e, d, and b

respectively. In each of these steps, the homology of the initial simplicial complex is preserved.

Finally, the edge 3 and vertex a remain. There are no remaining cells of dimension 2. This

implies that the homology of order 2 is zero. In dimension 1, edge 3 is irreducible as it is

incident on vertex a twice which means that it has no boundary. So homology of order 1 is

one. Similarly, the vertex a is irreducible as a 0-dimensional cell has a zero boundary. Thus

the homology of order 0 is also one.

There are certain crucial observations about the reduction equation 2.1 which we state

below:

1. A cell b can only be reduced with respect to one of its faces. This basically means that

given the vertices of a simplex, we can generate all the faces with respect to which it can

be reduced. For instance, the simplex [1, 2, 3] can only be reduced with respect to [1, 2],

[2, 3] or [1, 3].

2. If cell b is reduced with respect to face a, the boundaries and coboundaries of only the

neighbouring cells and faces are affected.

3. If a cell of the highest unreduced dimension d is reduced, only the boundaries of dimen-

sion d are modified.

These properties of the reduction equation will be utilised later for the GPU algorithm.

Chapter 3

Related Work

Homology computations via the classical method given by Munkres [11] has exponential

bounds. The Smith normal form used to compute homology requires a polynomial number

of steps but the numbers in the intermediate computations can get very large thus yielding ex-

ponential bounds. Kannan et al. [12] gave the first polynomial time algorithm to compute the

Smith normal form of matrices. A probabilistic analysis based on the fact that the boundary

matrices are sparse further improved the expected running time to O(n2) [13]. The quadratic

complexity is undesirable for very large datasets.

For finite simplicial complexes embedded in R3, Delfinado et al. [14] describe a near linear

time algorithm to compute homology. However, this algorithm does not extend to complexes

in dimensions greater than three.

Another class of algorithms are the algebraic reduction algorithms that reduce the size of

the complex while maintaining its homology. Kaczynski et al. [8] propose a reduction al-

gorithm to compute homology of a finitely generated chain complex. This is the first in a

number of algorithms based on algebraic and geometric reductions which are implemented

in REDHOM, a software library for efficient computation of homology of sets [15]. REDHOM

includes algorithms for computing homology based on coreductions [16], acyclic subspace

methods [17] and discrete Morse theory [18]. All these methods postpone the actual homol-

ogy computations using Smith normal form until the complex size is much smaller. The im-

plementation in REDHOM is sequential and there is scope for parallelization in many of its

11

CHAPTER 3. RELATED WORK 12

algorithms.

Lewis et al. [19] have implemented a framework for parallel computation of homology on

multicore computers by dividing an input complex into local pieces and performing parallel

computations on these. After the parallel computations, the pieces are merged and homology

is calculated again to give the final result. The method relies on the property of the initial

division that the homology is equal to the sum of homology of the individual pieces. However,

this method does not scale to the level of parallelism offered by manycore GPU platforms, an

issue we address in our work.

Chapter 4

Homology Computations on Multicore

Systems

We now propose two approaches to parallelizing the homology computation algorithm. The

first approach is suitable for multicore computations and is based on the sequential algorithm

implemented in the REDHOM library [15]. The library has efficient implementations of algo-

rithms based on reduction methods such as acyclic subspace construction, elementary reduc-

tions, and discrete Morse theory.

Figure 4.1: Intermediate steps in REDHOM are disabled to focus on reductions

13

CHAPTER 4. HOMOLOGY COMPUTATIONS ON MULTICORE SYSTEMS 14

BLUNT POST BUCKY SYNTH
0

20

40

60

80

100

120

140

160

180

Algebraic Reductions
Codes + Reducible
Complex
Read and construct
simplicial complex

DATASETS

T
IM

E
(I

N
 S

E
C

O
N

D
S

)

Figure 4.2: Timings for various functions in homology computations using sequential alge-
braic reductions

Each of these techniques is applied in sequence on the input complex to reduce its size

and hence compute the homology efficiently. In this work, our focus is only on parallelizing

algebraic reductions. We disable all the other steps of REDHOM and restrict our attention to

algebraic reductions, as shown in Figure 4.1.

First, we discuss the steps of the sequential algebraic reductions which are profiled for

various datasets in Figure 4.2. We discuss the datasets mentioned in the figure in more detail

in Chapter 6.

4.1 Sequential algorithm for algebraic reductions

Read and construct simplicial complex. In this step, maximally induced simplices of a sim-

plicial complex are taken as input and the simplices of all dimensions are generated. This step

forms the pre-processing step for all the algorithms implemented in REDHOM, including alge-

braic reductions. As seen in Figure 4.2, this step has a very low contribution to the execution

times of sequential algebraic reductions.

CHAPTER 4. HOMOLOGY COMPUTATIONS ON MULTICORE SYSTEMS 15

Codes assignment and construction of reducible complex. The simplicial complex con-

structed in the previous step has to be algebraically reduced for homology computations using

Equation 2.1. Since each step of a reduction modifies the boundaries and coboundaries of

simplices, we need a data structure that provides fast access to boundary and coboundary data.

For the purpose of creating a map from simplices to their boundaries and coboundaries, inte-

ger codes are assigned to all the simplices. Then boundary and coboundary maps which assign

a chain to each code are constructed. This set of maps constitutes a reducible complex on

which algebraic reductions are performed. This step takes up the highest percentage of the

total execution time.

Algebraic reductions. This step performs the actual reductions on the reducible complex that

represents the input simplicial complex. Starting from the highest dimension, the cells are re-

duced with respect to their faces and their boundary maps are modified. For each dimension,

the number of remaining irreducible simplices is the homology of that dimension. The modi-

fication of these boundaries and coboundaries to compute homology is also a time consuming

step in sequential reductions.

4.2 Multicore algorithm for algebraic reductions

We attempt to parallelize the construction of the reducible complex and the algebraic reduc-

tions as both of these are the major contributors to the execution time of the homology com-

putations using algebraic reductions. Algorithm 1 explains the steps for computation of ho-

mology on multicore machines. The steps are : decomposition of the complex into partitions,

parallel reductions of these partitions, merging of the reduced partitions and sequential reduc-

tion of the merged complex.

Decomposition into partitions. Parallelization depends on an initial partition of the input

mesh into near-equal sized meshes whose boundaries are as small as possible. These partitions

are generated using METIS, a graph partitioning software [20]. Minimizing the number of

boundary cells helps in reducing the time spent in the sequential part of our algorithm while

similar sized partitions help in maintaining load balance during the parallel phase. Simplices

CHAPTER 4. HOMOLOGY COMPUTATIONS ON MULTICORE SYSTEMS 16

with all their vertices occurring in two or more partitions are marked as boundary simplices.

During the serial read phase, we preallocate contiguous memory for non-boundary simplices

from each partitions. This ensures spatial locality of simplices from the same partition. Also,

a separate memory space is allocated beforehand for the boundary simplices.

Parallel construction of the reducible complex. After boundary vertices are marked, we

spawn one thread per partition. Firstly, the threads split the simplicial complex obtained from

the read operation to construct one reducible complex per partition. As the non-boundary

simplices of a partition belong to a contiguous memory space, cache misses incurred in the

iterations over these simplices to construct the reducible complex in parallel are minimized.

For the set of boundary simplices, all the threads have to iterate over the same memory space

but this does not greatly affect performance due to the small size of the boundary compared to

the size of the partitions.

Algorithm 1 Algorithm For Multicore Homology
Require: Maximal simplices of simplicial complex K
Ensure: Homology : β[0],β[1],. . . ,β[d(K)]

1: Partition the simplicial complex K (P0,P1,. . . ,Pk−1)
2: Mark boundary vertices
3: Spawn k threads and assign thread t to Pt

4: (In Parallel) Threads construct reducible complex for their partition
5: (In Parallel) Threads reduce non-boundary cells in their partition
6: Merge unreduced partitions to get a single reducible chain complex K ′

7: Perform algebraic reductions on all reducible cells of K ′

8: β[d] is cardinality of irreducible cells in dimension d return β

The reducible complex represents the boundary and coboundary information of the parti-

tion assigned to the thread. Codes are assigned to cells while ensuring that boundary cells,

i.e., cells with all their vertices on the boundary, are assigned the same code over all partitions.

Using METIS for graph partitioning ensures that we obtain balanced partitions of the mesh,

thus keeping these parallel constructions load-balanced.

Parallel algebraic reductions. Algebraic reductions are then performed in parallel on each of

these reducible complexes. The reductions are done on all cells with the exception of boundary

cells. Boundary cells are shared by two or more partitions and are not reduced in the parallel

phase. Our partitions should thus have very small boundary sizes to maximize the parallel

CHAPTER 4. HOMOLOGY COMPUTATIONS ON MULTICORE SYSTEMS 17

reductions.

Figure 4.3: Intermediate steps in reductions of the partitions by different threads. Different

colours represent the partitions reduced by the threads. The boundary elements are shown in

red and are not reduced in the parallel phase.

Figure 4.3 shows some of the intermediate steps in the parallel reduction phase. The threads

reduce the different coloured partitions in parallel and leave the boundaries unreduced.

Merge and sequential reductions. Now each thread has a partially reduced chain complex

consisting primarily of unreduced boundary cells. All of these complexes are then merged

together to form a new reducible complex. As reduction operations preserve homology, the

homology of this new complex is the same as the homology of the input mesh. Algebraic

reductions are applied to all reducible cells of the merged chain complex. After this step is

completed, the homology in each dimension is given by the number of irreducible cells of that

dimension. Figure 4.4 shows the different partitions being merged after which the complex is

reduced sequentially.

CHAPTER 4. HOMOLOGY COMPUTATIONS ON MULTICORE SYSTEMS 18

Figure 4.4: Intermediate steps of the sequential reduction phase. The partitions are merged in

this case and sequential reductions are performed subsequently.

Chapter 5

Homology Computations on

Manycore/GPU Systems

As mentioned, the methodology used for multicore homology cannot be directly extended to

GPU architectures. We propose an algorithm to compute homology on GPUs. The discussion

considers Z2 homology i.e., addition modulo 2, but can be easily extended to arbitrary fields,

albeit with increased space requirements. We assume that the input is in the form of maximal

simplices of a simplicial complex and is stored as a set of vertex arrays in the GPU global

memory. Algorithm 2 is the homology computation algorithm for GPUs. The important steps

in the algorithm are explained below.

5.1 Important steps in the GPU algorithm

Reducing memory requirements. In Equation 2.1, we observe that reducing a cell in dimen-

sion m can only modify the boundaries in dimensions m and m + 1. So, if we start from the

highest dimension and work our way downwards, the boundaries in only the highest dimension

are modified [8]. An algebraic reduction of a cell in dimension m is performed with respect to

one of its faces in dimensionm−1. Thus, given the list of all cells we can generate all the faces

with which the cells can be paired and reduced. This implies that we just need to transfer the

list of simplices of the highest unreduced dimension m to perform algebraic reductions. This

19

CHAPTER 5. HOMOLOGY COMPUTATIONS ON MANYCORE/GPU SYSTEMS 20

crucial observation helps in improving performance of the algorithm as all the intermediate

data structures are generated on the GPU so that data transfers between the host and device are

minimized. Intermediate data structures include the boundary data and the coboundary data

of the cells and faces respectively. For lower dimensions, we only need to carry forward the

unreduced faces from this dimension. In comparison to the space required for storing the entire

simplicial complex, GPU memory requirements are very low when we adopt this approach of

constructing the complex per-dimension starting from the highest dimension. In contrast with

this, the entire simplicial complex with simplices in all dimensions is constructed in REDHOM

as a pre-processing step.

Algorithm 2 Algorithm For GPU Homology
Require: Maximal simplices of simplicial complex K
Ensure: Homology : β[0],β[1],. . . ,β[d(K)]

1: for dim = d(K) downto 1 do
2: Transfer cells of dimension dim to GPU(struct-cells)
3: Allocate space for faces on GPU(struct-faces)
4: β[dim] = Reduce-dimension(struct-cells,struct-faces)
5: Merge unreduced faces in struct-faces with cells of

dimension dim− 1
6: end for
7: return β

Data structure for reductions. Algebraic reductions of a cell-face pair require a data struc-

ture which allows fast access to cell boundaries and face coboundaries [1]. In REDHOM, this

reducible chain complex is generated from the simplicial complex [15]. For our purposes,

we never construct the entire simplicial complex. In each iteration in Algorithm 2, we only

transfer the unreduced simplices of the highest unreduced dimension to the GPU.

On the device, the reducible complex is generated in the procedure given in Algorithm 3.

Initially, all the cells to be reduced are simplices. So, it is straightforward to generate the faces.

It is trivial for cells to access the faces on their boundaries and also to compute the boundary-

sizes which are all equal in the beginning. However, the list of faces has many repeated faces

that belong to the boundary of more than one cell. A sort procedure, say lexicographical sort,

helps to collect the repeated faces and in obtaining their coboundary cells and coboundary

sizes. The indices of the faces change after the sorting step. So, a remapping from old face

CHAPTER 5. HOMOLOGY COMPUTATIONS ON MANYCORE/GPU SYSTEMS 21

indices to new ones is performed on the cell boundaries. After this step, all cells and faces

are organised into a data structure that enables efficient algebraic reductions, by supporting

fast access to cell boundaries and face coboundaries. Cells can access their boundary by using

the new maps and faces can directly access their coboundary by using the values of their old

locations. For instance, if the face generated from a tetrahedron had an initial index i, the

index of the parent tetrahedron of this face is bi/4c. Initially we ensure that the boundary face

indices and coboundary cell indices are stored in sorted order. This helps in ensuring that the

symmetric difference operation carried out for algebraic reductions can be executed in time

linear in the size of the boundary/coboundary.

Algorithm 3 Procedure Reduce-dimension

1: Reduce-dimension(struct-cells,struct-faces){
2: (GPU) Generate faces from cells
3: (GPU) Assign values to boundary, boundary-size vectors
4: (GPU) Sort faces in lexicographic order and mark repeated faces
5: (GPU) Assign values to coboundary, coboundary-size vectors
6: (GPU) Remap to get newIDs in boundary vectors
7: (GPU) Remove repeats from face vectors
8: Initialize variables irreducible, reduced to 0
9: while (irreducible + reduced < number of cells) do

10: (GPU) Each cell finds face with min. cost of reduction
11: (GPU) Cells with min. costs within fixed margin do a

race-prioritycheck-check to lock required
boundaries and coboundaries

12: (GPU) Invoke Kernel Reduce-pair
13: (GPU) Update values of reduced and irreducible
14: end while
15: return irreducible
16: }

Cost of a reduce-pair operation. When reducing the cells of a particular dimension, only

one of the many faces of a cell has to be chosen for reduction. In addition to this, not all

cells can be reduced simultaneously. We introduce a novel cost function that helps in choosing

unique reduction pairs without conflicts. We know that a single reduce operation modifies the

boundary and coboundary of neighbouring simplices. Two different orderings for reduction

are shown in Figures 5.1 and 5.2. Figure 5.1 represents a bad order because the cell to be

CHAPTER 5. HOMOLOGY COMPUTATIONS ON MANYCORE/GPU SYSTEMS 22

Figure 5.1: A series of bad choices for reductions; internal cells are chosen at each step causing
a large number of boundaries and coboundaries to be modified

reduced at each step has large boundary and coboundary sizes. On the other hand, Figure 5.2

chooses a boundary triangle to be reduced with respect to a boundary edge at each step.

We only allow reduction pairs with costs within a small margin of the smallest cost to

proceed with reductions in a given iteration. As cost of a reduction pair reflects the time taken

for that particular cell-face reduction, avoiding high reduction costs ensures that we limit the

time spent in a particular iteration. As the size of our complexes increase, the ratio of low

cost boundary simplices to total number of simplices also decreases. Confining ourselves to

reductions of only the lowest cost simplices would restrict the amount of parallelism possible

in a GPU setting where each thread is assigned one cell. So, slightly higher cost reductions are

allowed using a margin.

To derive the cost function and to describe the intuition behind its design, let us consider

Equation 2.1 again. As reductions are performed on the highest unreduced dimension, only

the boundaries of dimension m are modified. The value 〈∂v, a〉 is non-zero only if v is on the

coboundary of face a. So, reduction with respect to a only modifies the boundaries of cells

on the coboundary of a. Similarly, if cell b is reduced, only the coboundaries of faces on its

boundary are modified.

When working with Z2 homology, the boundaries and coboundaries are essentially sets of

CHAPTER 5. HOMOLOGY COMPUTATIONS ON MANYCORE/GPU SYSTEMS 23

Figure 5.2: Better order for reductions which chooses boundary cells for reduction at each step

faces and cells respectively. For cell a, Cbdy(a) and Bdy(a) are used to denote the set of cells

in the coboundary and boundary respectively. #Cbdy(a) and #Bdy(a) are the cardinality

of these sets. For Z2 homology, merging two boundaries or coboundaries is equivalent to a

symmetric set difference operation, as described in Algorithm 4. We define the cost of a pair

reduction as the work done in performing the symmetric set difference operations. As the order

of complexity of computing set difference of two sorted arrays is linear in the sum of number

of elements in these arrays, the cost of reducing cell b with face a is:

reduction cost(a, b) = (#Bdy(b)− 1)× (#Cbdy(a))

+
∑

g∈Bdy(b)\{a}

(#Cbdy(g))

+(#Cbdy(a)− 1)× (#Bdy(b))

+
∑

u∈Cbdy(a)\{b}

(#Bdy(u))

(5.1)

In Algorithm 3, the cost function is used to find the face with minimum cost of reduction for

each face. This cost helps in deciding the maximum cost we are willing to incur for reductions

in a particular iteration.

Race-prioritycheck-check and homology computations. The reduction of a cell-face pair

CHAPTER 5. HOMOLOGY COMPUTATIONS ON MANYCORE/GPU SYSTEMS 24

Algorithm 4 Kernel Reduce-pair

1: Reduce-pair(cell b,face a){
2: for all cells t on coboundary of a except b do
3: Bdy(t)=(Bdy(t)∪Bdy(b))\(Bdy(t)∩Bdy(b))
4: if (#Bdy(t) == 0) then
5: Mark t as irreducible
6: end if
7: end for
8: for all faces f on boundary of b except a do
9: Cbdy(f)=(Cbdy(f)∪Cbdy(a))\(Cbdy(f)∩Cbdy(a))

10: end for
11: Mark b, a as reduced
12: }

needs to modify certain boundaries and coboundaries as described in Algorithm 4. Thus we

need to ensure that these boundaries and coboundaries are not modified by more than one

thread performing a cell-face reduction. We use the three-phase race-prioritycheck-check

technique to ensure that modification of a particular boundary/coboundary is done only by a

single thread [21]. In the race step, threads assigned to each unreduced cell use their IDs to

lock the required boundaries and coboundaries. In the priority check step, all threads read the

lock ID value of the boundaries and coboundaries and modify the lock value, if and only if

they have a higher priority than the ID assigned in the race phase. Finally, in the check phase

all cells check if they have ownership of all the required boundaries and coboundaries. If the

result of the check phase is TRUE, then the thread proceed with the reduction.

An illustration of the phases of race-prioritycheck-check is given in Figure 5.3. We take

a part of a larger simplicial complex with the lower cost cells coloured yellow and the higher

cost ones coloured pink. The numbers in the parentheses are the randomly assigned priorities

of cells A and B. It is clear that both A and B cannot be reduced in the same iteration as

they share a neighbour. In the race phase, B marks one of the yellow neighbours of A as

well. However, in the priority-check phase, A gets ownership of the yellow neighbour as it

has higher priority(45) than B(13). In the check step, A checks that it has ownership of all its

neighbours and hence proceeds with the reduction (green). B fails the same check and hence

will not reduce in this iteration (coloured red).

CHAPTER 5. HOMOLOGY COMPUTATIONS ON MANYCORE/GPU SYSTEMS 25

Figure 5.3: Phases of race-prioritycheck-check

Assignment of priorities in the prioritycheck phase is not directly based on thread IDs.

Priorities to reduction pairs are assigned on the basis of costs defined in Equation 5.1. The

reduction pair with lower reduction costs is given a higher priority. Ties are broken based on

a random number assigned to each reduction pair. We do not directly use thread IDs to break

ties between reduction pairs with equal costs. This is because the lexicographic ordering of

the cells results in a series of cascading conflicts when we break ties using thread IDs. As a

result, very few pairs are able to obtain the required locks and proceed with the reduction, thus

reducing the number of parallel reductions in an iteration.

In some iterations, there is a possibility that the sequence of priorities is such that very few

pairs are declared reducible. In the worst case, it is possible that no pairs are reducible in this

iteration. In both these cases, random priorities are reassigned to reduction pairs to increase

the number of parallel reductions.

Unreduced cells in dimension m are marked irreducible when their boundary size be-

comes zero. This effectively means there is no face with respect to which these cells can be

reduced. When there are no reducible m-cells left, the number of irreducible m-cells is the ho-

mology of order m. After the homology for dimension m is computed, the maximal simplices

of dimension m−1 are merged with the unreduced faces of this iteration. The same procedure

is repeated until the homology of all orders has been computed.

CHAPTER 5. HOMOLOGY COMPUTATIONS ON MANYCORE/GPU SYSTEMS 26

5.2 Illustrative example

An illustration for the GPU algorithm for two-dimensional simplices is shown in Figures 5.4

and 5.5. Each unreduced cell is assigned to a GPU thread. The first column shows the com-

plex to be reduced at the beginning of an iteration and the costs are colour coded as grey,

yellow, pink and brown in increasing order. The second column shows the results of the race-

prioritycheck-check phase. The purple cells will be reduced, the green ones are locked by

the cells being reduced, and the orange cells do not participate in reductions of the present

iteration. A cell may not participate in reductions if it is unable to lock all the neighbouring

boundaries/coboundaries or if it has a very high reduction cost. We assume some random

priorities for the cells in this example which helps in breaking ties for cells with equal costs.

After the last iteration for two dimensional cells, only edges and vertices are unreduced. The

highest unreduced dimension is now one and similar steps are repeated till the homology for

all dimensions is computed.

CHAPTER 5. HOMOLOGY COMPUTATIONS ON MANYCORE/GPU SYSTEMS 27

Figure 5.4: Each row denotes a single iteration of the GPU algorithm: In the first column,
increasing order of reduction costs is grey, yellow, pink and brown. In the second column, we
show the cells to be reduced in purple, and the green cells are the locked neighbours of cells
being reduced. The orange cells are not reduced in this iteration. In the third column, we show
the structure of the complex after the iteration.

CHAPTER 5. HOMOLOGY COMPUTATIONS ON MANYCORE/GPU SYSTEMS 28

Figure 5.5: Fig 5.4 (contd.)

Chapter 6

Experiments and Results

The inputs to our experiments were mostly tetrahedral meshes obtained from the aim@shape

repository [22]. BLUNT represents the blunt fin dataset which consists of ~1 million simplices,

POST is the liquid post dataset with ~3 million simplices and BUCKY is the buckyball dataset

which ~6 million simplices), all from the aim@shape repository. SYNTH is a synthetically

generated dataset with ~10 million simplices.

6.1 Multicore

For computation of homology on multicore systems, we use METIS library for generating load-

balanced graph partitions. REDHOM is written in C++ and the parallelization is implemented in

OpenMP. The experiments were performed on an x86 64 Linux machine with 16GB of RAM

and a 2GHz Intel Xeon Processor E5-2650 with 20MB of L3 cache. We enable hyperthreading

to get 16 processing threads over the 8 physical cores.

The time taken by the various functions during sequential algebraic reductions in REDHOM

is shown in Figure 4.2. In all cases, construction of reducible complex is the most time-

consuming operation followed by algebraic reductions. The complex read and construction of

the simplicial complex is done sequentially. Codes are assigned to the simplices and reducible

complexes are constructed on the different partitions in parallel. Algebraic reductions are

performed on all non-boundary simplices in parallel following which the unreduced simplices

29

CHAPTER 6. EXPERIMENTS AND RESULTS 30

1 2 4 8 16
0

20

40

60

80

100

120

140

160

180

merge
Algebraic Reductions
Codes + Reducible
Complex
Split
Read and construct
simplicial complex

NUMBER OF THREADS

T
IM

E
 (

IN
 S

E
C

O
N

D
S

)

Figure 6.1: Parallelization results for dataset SYNTH using multicore reductions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

120

140

160

180

BLUNT
POST
BUCKY
SYNTH

NUMBER OF THREADS

T
IM

E
 (

IN
 S

E
C

O
N

D
S

)

Figure 6.2: Total times taken (including pre-processing step) with increasing number of cores

CHAPTER 6. EXPERIMENTS AND RESULTS 31

are merged.

The results of this parallelization for different number of threads on SYNTH dataset are

presented in Figure 6.1.

For all datasets, it is observed that the algebraic reductions step of the sequential algorithm

scales linearly with increasing number of cores. We obtain up to 10.7× speedup for this step

with 16 cores. We notice that the execution times for construction of the reducible complex

decrease with increasing number of cores. With 16 cores, the maximum speedup attained for

the construction of the reducible complex is 8.76× over the sequential execution of this step.

Also, the initial read and construction of the simplicial complex is performed sequentially

and lack of parallelism in this step eventually makes this function a major contributor to the

execution time. The total execution times for the various datasets with increasing number of

cores is in Figure 6.2. Performance gains of up to 4.9× are obtained with 16 threads over

sequential algebraic reductions.

Experiments were also performed on an x86 64 Linux machine with 64GB of RAM and

a 2.4GHz AMD Opteron 6136 with 12MB of L3 cache. This machine has 32 cores and we

obtained overall speedup of upto 7.2× for sequential algebraic reductions. We thus observe

saturation in performance with increasing number of cores. This can be partially explained by

the increasing number of boundary simplices between partitions.

6.2 GPU

The GPU algorithm for homology computations was implemented in CUDA for devices with

compute capability 2.0 and higher. The -arch = compute 20 and code = sm 20 flags are

used for compiling the code with the Nvidia compiler nvcc 5.0. We evaluate the performance

of our algorithm on a 1.15GHz Nvidia Tesla C2070 Card. It belongs to the Fermi GPU series

and has 6GB of global memory and 448 CUDA cores.

The timings vary over different runs for the same dataset due to the randomized nature of

the algorithm. For comparisons, we use the average times over 20 runs of homology compu-

tations for each dataset. We list the maximum, minimum, and average times (in seconds) for

CHAPTER 6. EXPERIMENTS AND RESULTS 32

BLUNT POST BUCKY SYNTH
0

10

20

30

40

50

DATASETS
S
P
E
E
D
U
P

Figure 6.3: Speedup of average GPU timings with respect to sequential algebraic reductions

each dataset in the following table.

- Max. time Min. time Avg. time

BLUNT 0.57s 0.48s 0.51s

POST 1.67s 0.96s 1.32s

BUCKY 2.93s 2.26s 2.71s

SYNTH 4.73s 3.19s 4.18s

CHAPTER 6. EXPERIMENTS AND RESULTS 33

BLUNT POST BUCKY SYNTH
0

2

4

6

8

10

12

14

16

18

20

REDHOM (serial, optimized)

GPU (average times)

Datasets

T
im

e
(i

n
 s

e
co

n
d

s)

BLUNT POST BUCKY SYNTH
0

2

4

6

8

10

12

14

16

18

20

REDHOM (serial,
optimized)
GPU (average times)

Datasets

T
im

e(
in

 s
ec

o
n

d
s)

Figure 6.4: Comparison of average GPU timings with optimized REDHOM , which includes

the sequential algebraic reductions together with other advanced homology engines supported

in the software.

The speedups of the average GPU timings over the sequential algebraic reductions are

shown in Figure 6.3. For SYNTH and POST datasets, we obtain about 40× speedup. The

average timings of the GPU algorithm REDHOM with all its homology engines are shown in

Figure 6.4. We observe up to 4.5× speedups with the GPU algorithm. In fact, in all cases the

algorithm takes less time than the time taken by REDHOM to construct the simplicial complex,

which is a pre-processing step for all its algorithms.

Chapter 7

Conclusions and Future Work

In this work, we have developed algorithms for homology computations on multicore and

manycore GPU systems. We observe up to 4.9× speedup with 16 cores and 7.2× with 32

cores over sequential algebraic reductions on multicore systems. A speedup of up to 40× over

the sequential algorithm is observed using our GPU algorithm. The GPU algorithm compares

favourably with the REDHOM library which has a series of algorithms for homology computa-

tions, giving up to 4.5× performance gains.

An extension of the concept of homology is persistent homology which helps in the iden-

tification of important voids. We would like to extend our work to efficient computation of

persistent homology which forms the cornerstone of Topological Data Analysis.

We have explored the possibility of parallelization based solely on algebraic reductions.

There are many other types of reduction algorithms implemented in REDHOM. We plan to

extend our work further by identifying algorithms that work at a local level to reduce the size

of the simplicial complex and then using a similar approach to parallelize it.

Another possible extension could be parallel algorithms for homology computations in a

distributed memory environment.

34

Bibliography

[1] T. Kaczynski, K. Mischaikow, and M. Mrozek, Computational Homology. New York:

Springer, 2004, vol. 157.

[2] G. Singh, F. Memoli, T. Ishkhanov, G. Sapiro, G. Carlsson, and D. L. Ringach, “Topo-

logical analysis of population activity in visual cortex,” Journal of vision, vol. 8, no. 8,

2008.

[3] S. Maadasamy, H. Doraiswamy, and V. Natarajan, “A hybrid parallel algorithm for com-

puting and tracking level set topology.” HiPC, 2012.

[4] A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and B. Hamann, “A topological

approach to simplification of three-dimensional scalar functions,” Visualization and Com-

puter Graphics, IEEE Transactions on, vol. 12, no. 4, pp. 474–484, 2006.

[5] H. Edelsbrunner and J. L. Harer, Computational Topology: An Introduction. American

Mathematical Soc., 2010.

[6] R. van de Weygaert, G. Vegter, H. Edelsbrunner, B. J. Jones, P. Pranav, C. Park, W. A.

Hellwing, B. Eldering, N. Kruithof, E. P. Bos et al., “Alpha, betti and the megaparsec

universe: on the topology of the cosmic web,” in Transactions on Computational Science

XIV. Springer, 2011, pp. 60–101.

[7] R. Ghrist and A. Muhammad, “Coverage and hole-detection in sensor networks via ho-

mology,” in Proc. Intl. symp. Information processing in sensor networks. IEEE Press,

2005, p. 34.

35

BIBLIOGRAPHY 36

[8] T. Kaczyński, M. Mrozek, and M. Ślusarek, “Homology computation by reduction of

chain complexes,” Computers & Mathematics with Applications, vol. 35, no. 4, pp. 59–70,

1998.

[9] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-memory pro-

gramming,” Computational Science & Engineering, IEEE, vol. 5, no. 1, pp. 46–55, 1998.

[10] A. J. Zomorodian, Topology for Computing. Cambridge University Press, 2005.

[11] J. R. Munkres, Elements of Algebraic Topology. Addison-Wesley Reading, 1984.

[12] R. Kannan and A. Bachem, “Polynomial algorithms for computing the smith and hermite

normal forms of an integer matrix,” SIAM Journal on Computing, vol. 8, no. 4, pp. 499–

507, 1979.

[13] B. R. Donald and D. R. Chang, “On the complexity of computing the homology type

of a triangulation,” in Proc. Annual symp. Foundations of Computer Science, 1991, pp.

650–661.

[14] C. J. A. Delfinado and H. Edelsbrunner, “An incremental algorithm for betti numbers of

simplicial complexes on the 3-sphere,” Computer Aided Geometric Design, vol. 12, no. 7,

pp. 771–784, 1995.

[15] “REDHOM,” http://redhom.ii.uj.edu.pl/.

[16] M. Mrozek and B. Batko, “Coreduction homology algorithm,” Discrete & Computational

Geometry, vol. 41, no. 1, pp. 96–118, 2009.

[17] M. Mrozek, P. Pilarczyk, and N. Żelazna, “Homology algorithm based on acyclic sub-

space,” Computers & Mathematics with Applications, vol. 55, no. 11, pp. 2395–2412,

2008.

[18] S. Harker, K. Mischaikow, M. Mrozek, V. Nanda, H. Wagner, M. Juda, and P. Dłotko,

BIBLIOGRAPHY 37

“The efficiency of a homology algorithm based on discrete morse theory and coreduc-

tions,” in Proc. Intl. Workshop Computational Topology in Image Context (CTIC 2010).

Image A, vol. 1, 2010, pp. 41–47.

[19] R. H. Lewis and A. Zomorodian, “Multicore homology,” http://comptop.

stanford.edu/preprints/, 2012.

[20] “METIS,” http://glaros.dtc.umn.edu/gkhome/views/metis.

[21] R. Nasre, M. Burtscher, and K. Pingali, “Morph algorithms on gpus,” in Proc. ACM

SIGPLAN symp. Principles and practice of parallel programming, 2013, pp. 147–156.

[22] “Aim@Shape,” http://www.aimatshape.net/.

