
E
m

b
ed

 u
si

n
g

R
a

d
ia

l
L

a
y

o
u

t

Extract
Spanning Contour

Tree

d-manifold

Neighbourhood of every point resembles the Euclidean Space

MORSE FUNCTION

A real valued function defined on a d-manifold, such that
There are no degenerate critical points
No two critical points have the same value

Critical Points of a smooth function are points
where the gradient becomes zero

The Reeb graph of a function is obtained by
contracting each connected component of a

level set to a point.

The Reeb graph expresses the evolution of connected
components of level sets as a graph whose nodes correspond
to critical points of the function.

Regular Point Minimum Maximum Saddle

Behaviour of isosurfaces at various types of vertices

Hollow Sphere Solid Sphere

Mesh Simplification and Feature Extraction

Simplify

Mesh
Simplification

46

10.5
10

11

25

35

12

45

43

55

0

44

Compute
Branch Decomposition

B0

B1 B2

B3

B4

B0

B1

B2B3

B4

B0

B1

B2

B3

B4

B0

B1

B2

B3 Add non-tree
Edges

Spanning Contour Tree
Spanning tree that satisfies the properties of a contour tree

We simply the Reeb graph using the notion of Extended Persistence – which
denotes the life time of a level set component

1. Repeat until Reeb graph cannot be simplified
a. While there exists a leaf/loop that can be pruned

i. Prune the leaf/loop
b. Remove every degree 2 node

Simplification Procedure

The leaves/loops that can be simplified are stored in a priority queue

46

10.5
10

11

25

35

12

45

43

55

0

44

Simplification Threshold = 1

46

25

35

45

55

0

Reeb
Graph

Efficient output-sensitive construction of Reeb graphs
Harish Doraiswamy and Vijay Natarajan
ISAAC ’08: Proc. Intl. Symp. Algorithms and Computation, 2008.

Efficient algorithms for computing Reeb graphs
Harish Doraiswamy and Vijay Natarajan

David Eppstein.
Dynamic generators of topologically embedded graphs, in: SODA’03: Proc. Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, 2003.

Kree Cole-Mclaughlin, Herbert Edelsbrunner, John Harer, Vijay Natarajan, and Valerio Pascucci.
Loops in Reeb graphs of 2-manifolds, Discrete and Computational Geometry, 32 (2), 2004, 231-
244.

Valerio Pascucci, Giorgio Scorzelli, Peer-Timo Bremer, and Ajith Mascarenhas.
Robust on-line computation and presentation of Reeb graphs: simplicity and speed, ACM
Transactions on Graphics, 26 (3), 2007, 58.

Mikkel Thorup.
Near-optimal fully-dynamic graph connectivity, in: STOC ’00: Proceedings of the thirty-
second Annual ACM Symposium on Theory of Computing, 2000.

The preimage of a real value is called a level set

LEVEL SETS

CRITICAL POINTS

REEB GRAPH CRITICAL VERTICES

1. Find the critical points of the input mesh
2. Connect the critical points to obtain the Reeb graph

Step I – Finding Critical Points

Link of a vertex – Mesh induced by its adjacent vertices
Lower Link – Mesh induced by its adjacent vertices that have a lower function value
Upper Link – Mesh induced by its adjacent vertices that have a higher function value

A vertex is regular if its upper link and lower link have 1 component. All other vertices are
critical

a. Compute the upper and lower link for each vertex in the input mesh
b. Classify the vertex as regular or critical depending on the number components in its

upper and lower link

Step II – Connecting Critical Points

We map each arc of the Reeb graph to an interval volume between two critical level sets

a. Compute the critical level set for each critical
point

b. Trace the interval volumes starting from each
critical level set to obtain the arcs in the Reeb
graph

Tracing the interval volumes is
accomplished by using the ls-graph - a
dual graph that stores the adjacencies
between triangles. The edges in this
graph traces the level set components as
function value is increased.

n – number of triangles in the input

l – size of critical level sets

t – number of critical points

Running Time – O(n + l + t log t)

Near-Optimal

Size of l is usually O(n) in practice, hence running time close to the lower bound O(n + t log t)

Generic

Works without modification for d-manifolds (d ≥ 2), and for non-manifold meshes

Output Sensitive
The running time depends of the number of critical points of the function, and the size of
critical level sets, which is indicative of the importance of features in the data

TWO-STEP ALGORITHM

Isosurface or level sets are used extensively to visualize three and higher
dimensional scientific data. The Reeb graph tracks topology changes in level
sets of a scalar function, and therefore serves as a useful user interface for
selecting meaningful level sets. Besides visualization, Reeb graphs also find
applications in geometric modeling and shape matching. We describe two
algorithms for constructing the Reeb graph of a smooth function defined
over manifolds in any dimension. The first algorithm maintains connected
components of level sets as a dynamic graph and constructs the Reeb graph
in O(n log(n) + n log(g)(log log(g))3) time for three-dimensional input,
where n is the number of triangles in the tetrahedral mesh representing the
input volume and g is the maximum genus over all level sets of the function.
Our algorithm extends to higher dimensions where we construct Reeb
graphs in O(n log(n)(log log(n))3) time. This is a significant improvement
over the previously known O (n2) algorithm.

In a complementary approach, we design a near-optimal two step algorithm
that is simple and easy to implement. This algorithm identifies critical
points of the input function in the first step, and connects the critical points
in the second step to obtain the Reeb graph. Experimental results show that
our two-step algorithm is an order of magnitude faster than existing
methods. We also develop methods to simplify the Reeb graph, which aids in
removing noise and unimportant features from the input, and produce a
feature-directed layout of the Reeb graph, which helps users explore their
data effectively.

ABSTRACT

AN APPLICATION REEB GRAPH LAYOUTREEB GRAPH SIMPLIFICATION

PUBLICATIONS REFERENCES

THE SWEEP ALGORITHM

(The conventional approach)

1. Sort vertices in increasing order of function value
2. Starting from the smallest vertex, maintain the level set at a function value

infinitesimally above the vertex under consideration
3. Update the Reeb graph depending on the changes in components of the level set

Edges of the level sets

Vertex under consideration

Vertex with lower function
value

Vertex with higher function
valueEdge to be added to the level set

Edge to be removed from the level set

We use a tree-cotree partition (T,C,X) to store the isosurface I

3-manifolds

T – Minimum spanning tree

C – Maximum spanning Cotree

X – The edges of I not in T and C
(size equal to twice the genus of the surface)

Tree-Cotree partition of a
torus that is cut open

Edges in T

Edges in C

Edges in X

Supports insert and delete operations in O(log n) and

O(log n + log(g)(log log(g))3) time respectively.

Given an input mesh with n triangles, 2n insert and delete operations are performed to

maintain the level sets by the sweep algorithm.

Sweep algorithm for 3-manifolds runs

in O(n log(n) + n log(g)(log log(g))3) time

d-manifolds

The fully-dynamic graph connectivity algorithm is used to maintain the level sets of a d-manifold

Supports insert and delete operations in O(log(n)(loglog(n))3) time respectively.

Supports connectivity queries in O(log(n)/logloglog(n)) time respectively.

Sweep algorithm for 3-manifolds runs in O(n log(n) (log log(n))3) time

[Eppstein, 2003]

[Thorup, 2000]

MANTAINING LEVEL SETS

