Visual Analysis of Interactions in Multifield Scientific
Data

A THESIS
SUBMITTED FOR THE DEGREE OF
Doctor of ‘Philosophy

IN THE FACULTY OF ENGINEERING

by

Suthambhara N

Computer Science and Automation
Indian Institute of Science

BANGALORE - 560 012

NOVEMBER 2011



©Suthambhara N

NOVEMBER 2011
All rights reserved



TO

My Parents



Acknowledgements

Over the last few years, | received a lot of support from maegpgbe to make this thesis
possible. In my culture, it is believed that it is impossibdethank ones family with words

or even action for all the sacrifices that they make. | am thdrtkat | was born to such

wonderful parents. The unconditional support that | resgifrom my parents and my brother
made me stronger and motivated me to do better at every stap research.

My learning curve steeply grew after joining the researagpem at [ISc. The most im-
portant reason for this was because of regular interactiathsmy research advisor, Dr. Vijay
Natarajan. His guidance and critical feedback helped menfwave in all aspects of doing
research; from formulating a research problem to presgmésults in front of an academic
audience. The work in this thesis is his as much as it is mimeauld like to thank him for his
continued belief in my ability and his support for the past fjears.

| am grateful to the former chairman, Prof Narasimha Murty, His support during my
initial days at 11Sc. | am also thankful to the chairman, Prblarahari for the support and
encouragement given to me. There were some courses that/kem lot at [ISc and the most
enthralling of them was the Topics in Algorithms course taugy Dr. Kavitha Telikepalli. |
thank her for those wonderful lectures. | am also grateflPtof. Ravi Nanjundiah for his
valuable comments on our experiments with the climate datas

| made a lot of friends after coming here and some of my friecatse to study at 11Sc.
| shall cherish the memories of my days at IISc with them. Thegported me in all my

endeavors and their advice on certain personal issuescheipemmensely.



Throughout my studentship, | was supported by a scholarfsbip the Ministry of Hu-
man Resources, Govt of India. My research was also suppoytéthding from the Dept of
Science and Technology, Govt of India (grant:SR/S3/EECEADY) and travel grants from
Microsoft Research and IBM, India Research Labs. | am thankfallltthese organizations
for their support.

| am grateful to the office staff, especially Mrs. Lalita anddMiSuguna for getting all my

office work done so quickly and efficiently.



Publications based on this Thesis

1. Suthambhara N., Vijay Natarajan and Ravi S Nanjundiah. &d@&nt-Based Compari-
son Measure for Visual analysis of Multifield Dataomputer Graphics Forum (EuroVis

2011), 30(3), 2011, 1101-111Third best paper award

2. Suthambhara N. and Vijay Natarajan. Relation-aware s Extraction in Multifield
Data. IEEE Transactions on Visualization and Computer Graphicq2), 2011, 182-
191

3. Suthambhara N. and Vijay Natarajan. Simplification obbasets.In Topological Data
Analysis and Visualization: Theory, Algorithms and Apgticns Valerio Pascucci,
Xavier Tricoche, Hans Hagen, and Julien Tierny (editorpjir§er-Verlag, Mathematics

and Visualization Series, 2011, 91-102.

Presentations

¢ A Gradient-Based Comparison Measure for Visual analysis dfifiéld Data. IEEE / Eu-
rographics EuroVis, Bergen, 2011.

e Relation-aware Isosurface Extraction in Multifield DataEEVisWeek, TVCG session,

Providence, 2011.

e Simplification of Jacobi sets. TopolnVis, Snowbird, 2009.



Abstract

Data from present day scientific simulations and obsemratid physical processes often con-
sist of multiple scalar fields. It is important to study theéermactions between the fields to
understand the underlying phenomena. A visual representatt these interactions would as-
sist the scientist by providing quick insights into compfekationships that exist between the
fields.

We describe new techniques for visual analysis of multifsddlar data where the rela-
tionships can be quantified by the gradients of the indiMidealar fields and their mutual
alignment. Empirically, gradients along with their mutaignment have been shown to be a
good indicator of the relationships between the differealar variables.

The Jacobi set, defined as the set of points where the gracaeatlinearly dependent,
describes the relationship between the gradient fields.J&bebi set of two piecewise linear
functions may contain several components indicative o$yoir a feature-rich dataset. For
two dimensional domains, we pose the problem of simplificaéis the extraction of level sets
and offset contours and describe a robust technique to iynaold create a multi-resolution
representation of the Jacobi set.

Existing isosurface-based techniques for scalar dataemn like Reeb graphs, contour
spectra, isosurface statistics, etc., study a scalar ieldalation. We argue that the iden-
tification of interesting isovalues in a multifield data skbsld necessarily be based on the
interaction between the different fields. We introduce aat@m density function that profiles

the relationship between multiple scalar fields over istag@s of a given scalar field. This



profile serves as a valuable tool for multifield data explorabecause it provides the user
with cues to identify interesting isovalues of scalar fields

Finally, we introduce a new multifield comparison measuredpture relationships be-
tween scalar variables. We also show that our measure igsitise to noise in the scalar
fields and to noise in their gradients. Further, it can be agegbrobustly and efficiently. The
comparison measure can be used to identify regions of sttéréhe domain where interac-
tions between the scalar fields are significant. Subsequgmlization of the data focuses on
these regions of interest leading to effective visual asialy

We demonstrate the effectiveness of our techniques by mgptiem to real world data

from different domains like combustion studies, climatesces and computer graphics.



Contents

Acknowledgements

Publications based on this Thesis

Abstract

1

Introduction

1.1 Scalar Field Visualization . . . . . . . . . . ... ... ... .......
1.2 Multifield Visualization . . . . . . . . . . ... . . ..
1.3 Contributions . . . . . . . . e e e e
1.4 ChapterOutline . . . . . . . . . . e

Background

2.1 Manifolds . . . . . . . . e e

2.2 Gradientsonmanifolds . . . . . . . . ... ...

2.3 Representationof Manifolds . . . .. .. ... ............ ..

2.4 RepresentationofScalarFields . . . . .. ... ... ... ... ....
2.4.1 Piecewise Linear Functions . . ... ... ... .. . .. .....
2.4.2 Isosurface/levelset . . . ... ... ... .. ... ... ...

Simplification of Jacobi Sets

3.1 Introduction . . . . . . . . . e
3.1.1 Motivation . . . ..
3.1.2 Priorwork and proposed approach . . . . .. ... ... ... ...

3.2 Background . . . . .. ...
3.21 MorseTheory. . . . . . . . .
3.22 ReebGraphs . . ... .. . ...
3.23 JacobiSets . . .. ...

3.3 Simplification . . . . . ... e
3.3.1 OffsettingComponents . . . . . . .. ... .. .. ... ......
3.3.2 GreedyAlgorithm . . .. . ... ... ... ..
3.3.3 Implementation . . . . . . ... ...

3.4 Analysis . . . .. e
3.4.1 Simplifying the input function . . . . .. ... ... .......

Vi

wwk
(631



CONTENTS Vii
3.4.2 Effect on global comparisonmeasure . .. ......... ... 26
3.5 Implementation for Piecewise Linear Functions . . . . ...... . .. ... 29
3.6 Applications . . . . . . . .. 03
3.6.1 \Visualizing Silhouettes . . . . . . . .. . ... .. oo L. 30
3.6.2 Combustion . . . . . . ... .. 31
3.7 Conclusions . . . . . .. e e 33
4 Relation-aware Isosurface Extraction 34
4.1 Introduction . . . . . . . ... e e 43
411 RelatedWork . . . . . . . . .. ... 35
412 Outline . . .. .. . . . . 37
4.2 Variation Density Function . . . . . . . .. ... 0 e 37
421 ComparisonMeasure . . . . . . . .. e 37
4,22 Definition . . . . . ... 38
4.2.3 Variation Density and Total Variation . . . .. ... ... .. .. 40
4.2.4 \Variation Density Profile . . . . . .. .. ... .. ... .. .. ... 42
4.3 Computation . . . . . ... e e e 44
4.4 Applications . . . . . . . e 64
441 2D Combustion . . . . . . . . e 47
4.4.2 Time Varying Combustion . . . . .. .. ... ... ......... 49
4.4.3 Hurricanelsabel . ... ... ... ... . ... . .. 51
4.4.4 Universe Simulation . . . ... .. ... ... ... . ..., 52
4.5 DISCUSSION . . . . . . . e e e e e e e 54
4.6 Conclusionsand Futurework . . . . . . . .. . ... ... . .. 55
5 Multifield Comparison Measure 57
5.1 Introduction . . . . . . . ... e 75
5.1.1 Proposed Approach . . . .. .. ... .. .. ... ... ... ..., 58
512 RelatedWork . . . . . . ... 58
5.3 Outline . . . . .. . . . . . 60
5.2 Multifield Comparison Measure . . . . . . . .. . ... ... 60
5.2.1 Matrix Norm . . . . . . . e 61
5.2.2 Comparison Measure . . . . . . . . . v i e 61
5.3 Analyzing Synthetic Functions . . . . . .. .. .. ... ... ...... 65
5.3.1 One/twoscalarfunctions . ... .. ... .. ... .. ....... 7 6
5.3.2 Multiple / time-varying scalar functions . . . . . . .. ... ... 67
54 Computation . . . . . . .. 68
5.4.1 Maximum eigenvalue computation. . . . . ... ... . ... ... 68
542 Analysis . . . . ... 69
55 Applications . . . . . . ... e e 96
5.5.1 IsabelHurricane . . ... .. ... . ... .. ... .. 70
55,2 GlobalWindPatterns . . . . . .. ... .. ... ... ........ 73
5.5.3 Hydrogen Combustion . . . ... ... .. ... ........... 77
5.6 DISCUSSION . . . . . . . . e 79



CONTENTS

viii

5.6.1 Limitations . . . . . . . . ...

5.6.2 Sensitivitytonoise . . . . . ...

5.6.3 Multifield comparison measureand PCA . . . . . ... ... ...
57 Conclusions . . . . . ..

6 Conclusions
Bibliography

Index



List of Figures

11
1.2
1.3

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
5.4
5.5
5.6
5.7

Visualization hierarchy . . . . . . . . . .. ... . ... .. ... ..., 2
Scalar field visualization . . . . .. ... ... ... . L. 2
Multifield visualization of a hurricane . . . . . .. ... .. .. ..... 4
Simplices of differentdimensions . . . . . . .. ... ... ... .. 10
Simplicial Complex . . . . . . . . 01
Reeb graphofamanifold . . . . . ... ... ... ... ... ........ 51
Jacobi set of two analytic functions . . . . . .. ... .. ... ... ... 16
Offsetting a level setcomponent . . . . . .. .. ... ... ... ..... 17
Offset operations : merge, split, purge andcreate . . ... .. ... .. 19
Directed Reeb Graph . . . . . . . . . .. .. .. .. . . 21
Reeb graph : Unreachable vertices . . . . . ... .. ... .. ..... 21
Simplifying the input function . . . . . . .. .. ... ... L 26
Voronoiregionofavertex . . . . ... . ... 29
Applications:Silhouettes . . . . . . . ... L Lo 31
Applications:Silhouettes . . . . . . . . .. ... ... L oL 32
Applications:Combustion . . . . . . .. .. ... ... . . . 32
Local orthonormal coordinate system on an isosurface. . . . . . .. .. 38
Variation density for two functions . . . . . . .. ... . ... 40
Variation density for synthetic functions . . . . . .. .. ... .. .. .. 41
Computation ofy for a two dimensional simplicial complex . . . .. .. .. 44
Profiling isocontours of oxygen during a combustion sation . . . . . . . a7
Phases in time varying combustion . . . . . . .. .. ... ... . ... 49
Hurricane Isabel . . . . . . . . . . .. . . 51
Universe Simulation . . . . . . . . ... 53
Piecewise-linear function defined on atriangle ina2Bme . . . . . . .. 62
Multifield comparison measure for synthetic function .. .. . . . . .. ... 66
Equivalent configurations ofgradients . . . . . ... ... ......... 66
Hurricane Isabeltrack . . . . . . . . .. ... .. ... .. ... ... .. 70
Fronts in Hurricane Isabelathour10 . . . . . . . .. .. ... ........ 71
Fronts in Hurricane Isabelathour40 . . . . . . .. ... ... . ....... 71
Multifield comparison measure for wind velocities . . . . .. ... ... 74

iX



LIST OF FIGURES X

5.8 Changesinstormtracks. . . . . . . . . . . . . . .. .. o 17
5.9 Wind patterns for other climate models . . . . . . Y £
5.10 Analyzing phases of combustion using the multlfleld panson measure .. 79

5.11 Stability in the comparison measure for Isabel . o =10



Chapter 1

Introduction

In this thesis, we develop techniques to visualize featof@sterest in modern scientific data.
The data is typically captured as samples over a domain ggiarr®f interest having a geo-
metric structure or from simulations. As an example, cosisibe recordings from a weather
station where different quantities like wind velocity, atspheric pressure and precipitation
are collected as samples over a geographic region (domaagh sample is a measurement
of a quantity of interest. The measurements could be sc@taesipitation), vectors (wind
velocity) or tensors. An elegant visual representatiorheéé measurements can greatly help
the scientist in analyzing the data. The focus of this thiesié developing new visualization
techniques for scalar scientific data.

Visualization is a process to communicate information pregdly. The information to be
displayed is part of data that could come from many souré&essiénsors, surveys, scientific
computations etc. Techniques for visualization can bestflad based on the type of data to be
displayed. The data may have multiple forms like text, a j@pscientific measurements over
a spatial region. The different areas of focus within thedf visualization classified based
on the kind of data to be visualized, is shown in Figure 1.1.r&é¥er the interested reader to

the book by Ward et al. [1] for a detailed description of eaxid in the figure.
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Scientific Information
Visualization Visualization
(Data with geometric information) (Data without geometry)

Scalar Field || Vector Field | | Tensor Field| Trees/Graphs/Network | | Text/Document
visualization|| Visualization | |Visualization Visualization Visualization

Visualization of
Multifield
scalar data

Figure 1.1: Tree depicting the classification of visualmatased on the kind of information
to be visualized. In this thesis, we focus on multi-field acdield visualization.

(b)

Figure 1.2: (a) Isosurface of an abdominal CT Scan (data edutp://volvis.org). (b) Volume
rendering of a CT scan of a teapot containing a lobster insi@&ata source:http://volvis.org).
(c) MRI scan of brain shown with color coding. The bright spsta tumor (image
source:http://www.scottcamazine.com).
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1.1 Scalar Field Visualization

A scalar function or a scalar field is a function that maps fgoirom ann-dimensional space
to real values. Scalar fields are often constructed by megsdevices or simulations. For
example, during a CT scan, X-rays are passed through the Inoidyeir strength after passing
is measured and a scalar field is constructed.

Visualization significantly helps in the understanding ¢ scalar field by allowing the
user to look at the distribution of real values over the doamahe simplest way to visualize a
scalar field is using colors to represent data values. Coltingagives visual representation of
the scalar value at a point in relation to its neighboringigal Another useful approach is to
show an isosurface/level set, which is a set of points wighstime function value. Figure 1.2a
shows an isosurface/level set of a CT scan of the abdomen apeivis. When the domain is
three dimensional it is possible to view the scalar field aesgles volume. A volume rendering
of a CT scan of a teapot containing a lobster inside is showngaré 1.2b. Slices of the 3D
volume displayed as 2D images also help understand the @ata.such color coded slice

from an MRI scan of the brain with tumor is shown in Figure 1.2c.

1.2 Multifield Visualization

Data from scientific experiments and simulations typicaliyitain multiple scalar fields de-
fined on a single domain. Techniques for effective visuéitireof single scalar fields are often
inadequate for visual analysis of multifield scientific ddtee to the complex relationships
that exist between the different scalar fields. As an exameleis consider a simulation of
combustion. The data consists of scalar fields correspgrtdifuel and air densities at each
point on a planar domain. Effective visual representatmiitfie scalar fields individually do

not capture the interactions that exist between fuel and\aianother motivating example, we
consider a simulation of a hurricane. Figure 1.3a shows timeaih of simulation. Weather

fronts are regions that separate air masses of differersittes It is also known that regions
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& "

(b) (©

Warm front

Leading warm front

(d)

Figure 1.3: Fronts in a hurricane. (a) Region of simulatioand. mass is shown in red. (b)
Volume rendering (top view) of horizontal wind speed Uf. YoJume rendering (top view) of

horizontal wind speed Vf. (d) Volume rendering (top view)eoderived scalar field capturing
rainbands at different fronts. The location of the frontads available from visualizations of

the scalar fields Uf and VA.
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inside the front have high horizontal wind turbulence. “l&ations of the individual wind
velocity components are shown in Figures 1.3b and 1.3c. Wergb that the individual vi-
sualizations do not show the weather fronts. We have degdlagechnique (see Chapter 5)
where we construct a new scalar field that captures reldtipesetween the scalar fields.
We visualize this derived field as shown in Figure 1.3d. THiedint weather fronts that are
helpful to a climate scientist are now clearly shown in treuaiization.

In all the techniques described in this thesis, we conslielengths and mutual alignment
of gradients of the individual scalar fields to quantify telaships. Gradients and their mutual
alignment have been used in literature to study a wide waoidtoth single field and multifield
data [2, 3,4, 5, 6]. For example, the notion of critical psifdgr a scalar fields can be extended

to multiple functions by considering the Jacobi set [5].

1.3 Contributions

The goal of this thesis is to develop techniques that helperunderstanding and visualization
of the complex interactions that exist between multipldasckelds in a real world data. As
mentioned in the previous section, we would like to studyhé gradients and their mutual
alignment play a role in the relationships that exist betwibe different scalar variables.

We follow two approaches to visualize interactions betwiendifferent scalar fields in

multifield data.

e A subset of the domain relevant to the relationships betweerscalar variables under
consideration is extracted. The extracted subset tygibals a geometric or topological

structure. The extracted subset is then visualized to gaight into the multifield data.

e A new scalar field is derived from the scalar variables thptwa interactions between
the fields. A visualization of this new derived field gives adication of the relation-

ships that exist between the scalar variables.
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In our first work, we follow the first approach to simplify J&c®ets. Jacobi sets, intro-
duced by Edelsbrunner et al. [5], extend the notion of &itmoints to multiple scalar func-
tions. The alignment of the gradients determine the inolusif a domain point in the Jacobi
set. We interpret the Jacobi set of a pair of scalar functsrtbe level set of a derived function

and describe a new relationship-preserving method forlgymg the Jacobi set. Specifically,

e We describe a new algorithm to compute the Jacobi set of tadaistields using a level
set interpretation. We derive a new field and extract thehlasmi as a level set of this

field. Such an interpretation helps us to naturally simphify Jacobi set.

e We cast the simplification problem as an integer linear @ogr We describe an off-
set operation to change the topology of individual comptseh the Jacobi set. We
then describe a greedy algorithm using offset operatiosslge the linear program re-
moving small loops. Repeated application of the simplifarateads to multi resolution

representation of the Jacobi set.

e We show that the change in the relationship between theiinsctue to simplification

is upper bounded by the amount of simplification.

e We show an application of our technique to computer grapMé&scompute the silhou-
ette of a model as a Jacobi set and simplify the silhouettealéeapply our technique

on a combustion data to study the relationship between aéhd air.

Multiple techniques have been proposed in the literatungleatify “important” isosur-
faces in scalar field data [7, 8]. However, these approache®thave obvious extensions to
multifield data. We argue that it is necessary to consideticgiships between scalar fields to

determine the importance of isosurfaces. As part of thisishe

¢ We have defined a new function called the variation densitetion to measure the

importance of an isosurface in multifield scientific data.
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e We have described an efficient algorithm to compute a profiteeimportances of iso-
values, called the variation density profile, for piecewviisear functions. The algorithm

is robust ensuring that the computed profile converges tadheal profile in the limit.

e We have developed a parallel implementation of the vanadiensity profile computa-

tion using GPUs.

e We have theoretical results establishing a link betweenvén@tion density function
and the well understood notion of topological persistenthis also ensures that the

variation density function is insensitive to noise in théada

e We use the variation density profile to study datasets frdferént domains like com-
bustion studies, astrophysics and climate sciences. Wpae@our results with existing
techniques and show that the variation density profile ie &bidentify important iso-

values better.

We use the local comparison measure [3] to simplify Jacdbiaasd and to identify impor-
tant isosurfaces using the variation density profile. Thallaomparison measure is defined
only when the number of functions being compared does naezkthe dimension of the do-
main. Also, existing approaches to compare scalar funetidten do not work well for more
than two functions. We address these limitations by intoooy a new derived scalar field

called the multifield comparison measure. Specifically,

e We introduce a new multifield comparison measure to captelegionships. Visual-
ization of the multifield comparison measure shows the auigons between different

scalar variables.

e We show that the multifield comparison measure satisfiesfitapoproperties like coor-
dinate system independence and its insensitiveness te moise scalar fields and also

their gradients.
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e We describe an efficient algorithm to compute the comparmmeasure for piecewise

linear functions.

e We apply the multifield comparison measure to study data ftbmate sciences and

combustion studies.

1.4 Chapter Outline

In chapter 2, we describe the background required for utaielsg the techniques that are
described in the thesis. In chapter 3, we describe a newitlgoto compute and simplify

Jacobi sets. In chapter 4, we introduce the variation defsiiction to measure relationships
on an isosurface and apply it to identify important isovalue multifield data. We describe
the multifield comparison measure and its applications aptér 5. We conclude the thesis in

Chapter 6.



Chapter 2

Background

This chapter covers the necessary background. Scalar sdddefined on spatial domains
with a geometric structure. In this thesis, we restrict dterdion to a special class of domains
called manifolds. Intuitively, a manifold is a space thatambles the Euclidean space locally,
for example, a hollow sphere can be considered as a spads libedlly two dimensional. The

n-dimensional Euclidean space ismmanifold.

2.1 Manifolds

A function f : X — Y between spaces andY is said to be &aomeomorphisni f is bijective,
continuous and the inverse bfis continuous. SpacesandY are said to bbomeomorphid
there exists a homeomorphism between themnAmanifold is a space where every point has
a neighbourhood homeomorphickd. Each point can be represented using a local coordinate
system. As irR", it is possible to define amdimensional vector (called the tangent vector) at
every point (technically, vectors can be defined only on asctd manifolds called differential
manifolds). Recall that the length of a vectorf is given by the square root of the inner
product of the vector with itself. This notion can be exteshtdy allowing inner products to

be defined at every point on the manifold. The metric arising tb such an inner product

is called theRiemannian metriand the manifold itself is said to HRiemannian A more
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Figure 2.1: Left to right: O-simplex (point), 1-simplexr(& segment), 2-simplex (triangle) and
3-simplex (tetrahedron).

Figure 2.2: The model of a teapot represented as a simptioraplex. The elements of the
simplicial complex are vertices (0-simplices), edgesifdpdices) and faces (2-simplices). The
simplicial complex is also a 2-manifold.

rigorous and technical explanation can be found in the bga&uillemin and Golubitsky [9].

We consider only Riemannian manifolds throughout this thesi

2.2 Gradients on manifolds

The gradient of a smooth function defined Bh at a pointx € R" is the vector whose com-
ponents are the partial derivatives of the function alonthemoordinate axis. The direction
of the gradient vector signifies the direction of steepestiaisof the function. The maximum
rate of change is given by the length of the gradientf 1§ a smooth function defined on a

Riemannian manifold angks, Xz, . .., X,) is a local coordinate system such that the unit tangent

vectors denoted byaixl, e dan) form an orthonormal basis. The gradientfoatx is defined
as the tangent vectatf (x) = (g—xfl(x), ey %(x)). If the gradient vanishes af thenx is said

to be acritical point of f.
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2.3 Representation of Manifolds

A Manifold can be represented in multiple ways on a compuier. example, it can be rep-
resented as a collection of cells that do not intersect wii another. Astructured gridis a
representation of a manifold with structured geometry wtibe cells are quadrilaterals (2D)
or cuboids (3D). The cells are attached to each other shadggs and vertices and partition
the domain.Rectilinear gridsare structured grids where all cells are rectangles (2Dgci r
angular cuboids (3D). The geometry of the manifold couldriegular where the locations of
points on the manifold are specified arbitrarily.

Manifolds with irregular geometry can be represented usingplicial complexes. For
0 <k < n, ak-simplexin R" is the convex hull ok + 1 affinely independent points. The
interior of a simplex is the set of points in the simplex thatrobt lie on the boundary. Define
the interior of a O-simplex to be itself (see Figure 2.1sifplicial complex Ks a collection of
simplices such that all faces of simplices in the simplic@hplex also belong to the complex
and the intersection of any two simplices is empty or a faceroon to both. Figure 2.2 shows
a simplicial complex representing a 2-manifold. Thimensionof K is the dimension of the

simplex inK with the highest dimension.

2.4 Representation of Scalar Fields

Scalar data is often available as values defined over a tioleaf points on a manifold. For
visual analysis, it is often necessary to get a continuopiesention of the data. This process
of reconstructing the data into a continuous represemato be accomplished using different
kinds of interpolation like linear, bilinear and trilinegaterpolation [10]. Applications requir-

ing higher order continuity in the scalar field use techngjiilee cubic interpolation [11].



Chapter 2. Background 12

2.4.1 Piecewise Linear Functions

In this thesis, whenever the scalar field is defined on a samaplcomplex, we use piecewise
linear interpolation to get a continuous representatiotneffield. Letk be a simplicial com-
plex and f : verticesK) — R be a real valued function defined on the verticeskof We
construct giecewise-linear functionpf: K — R by linearly extending_within each simplex.
The position of any poink in the interior of ak-simplex can be written uniquely as a convex

sum of the positions of vertices of the simplex, xex z!‘jll vV with z!‘jlly. =1. The tuple

(Y1, -, Y1) is called thebarycentriccoordinate ok. Definefp(x) = z!‘jll yif(vi). The func-

tion fp is continuous, linear within each simplex, and agrees Wittt the vertices oK. The
gradient offy is well defined in the interior of a simplex and is a constamteebecausd, is

linear within the simplex.

2.4.2 lIsosurface / level set

Let f be a smooth real valued function defined onnarmanifold. Thelevel setatc € R is
defined as the preimade(c). The level set at is always am— 1 manifold if the gradient of

f does not vanish anywhere on the level set. Level sets arealleal isocontours or isolines
for two dimensional manifolds and isosurfaces for threeatigional manifolds. When the
scalar field is defined on a rectangular grid, an isosurfanebeaextracted efficiently using
the marching cubes algorithm [12]. A similar algorithm edlimarching tetrahedra [13] can
be used for extracting isosurfaces of piecewise-lineactfans defined on a 3 dimensional

simplicial complex.



Chapter 3

Simplification of Jacobi Sets

In multifield scalar data, the linear dependence betweegrihdients of the scalar fields can
be used to study relationships between them. The Jacols sesulbset of the domain that
captures this linear dependence. In this chapter, We prassew algorithm to compute and

simplify the Jacobi set.

3.1 Introduction

3.1.1 Motivation

The Jacobi set extends the notion of critical points to mldtfunctions and helps describe
the relationship between multiple scalar functions. Hutelsner et al. [14] have shown that
the Jacobi sets can be used to compute a comparison measuehéwo scalar functions.

Bennett et al. [15] have used the Jacobi set to representltuaneé the silhouette of a mesh,
both of which are subsequently used to compute a cross paanagion. Jacobi sets have
also been used to track features of time-varying events asamolecular interactions and
combustion simulation [16]. All the above applicationsdaccommon challenge, namely the
presence of degenerate regions and noise in the data. THeenofrtomponents of the Jacobi

set is often more than what can be visually comprehendedit Bmecessary to simplify the

13
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Jacobi set. The simplification can be accomplished eithagubke notion of persistence [17],

or otherwise.

3.1.2 Prior work and proposed approach

In their paper, Bremer et al. [16] have described a methodrtmve noise in the Jacobi set
for time varying data. The persistence of a component of #ueki set is the time interval
between its birth and death. This measure has been used dwe@mmponents that are either
noise in the data or unimportant features. Extending thiggémeral functions is nontrivial
and hence a more complete approach with guaranteed errodbairequired. We pose the
problem of computing Jacobi sets as the computation of d #&teof a function defined on
the input manifold. Jacobi set simplification is accommigioy simplifying the level set. We
also ensure that the change in relationship between thédasaue to simplification does not

exceed a given input threshold.

3.2 Background

The simplification algorithm makes use of the Reeb graph taagedhe components in the
Jacobi set. In this section, we give a brief introduction tors& theory, Reeb graphs and

Jacobi sets.

3.2.1 Morse Theory

Morse theory studies the relationship between functiomsdomains. LefVl be a smooth
Riemannian 2-manifold. Lef be a smooth function defined dv and (x1,x2) be a local
coordinate system such that the unit tangent vecttgts ain) form an orthonormal basis with

respect to a Riemannian metric. The gradientfcdit x is defined as the vectadf(x) =

(S (), Fe(X).
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Figure 3.1.Left: Atwo-holed 2-manifold and the height function defined orPibints in blue,
green, and red correspond to minima, saddle, and maxima dditiction, respectivel\Right:
The Reeb graph of the height function. Loops in the Reeb graplesmond to holes in the
manifold.

A point x is a critical point of f if Of(x) is the zero vector. The functiofis called a

Morse functionf the Hessian

92f 02f
Wg (X) 0%X20%1 (X)

92f 921
(9X1(9X2 (X) d_)(%(x)

At (X) =

is non-singular at all critical points. Critical points adassified based on the eigenvalues of
the Hessian. A critical point is minimumif both the eigenvalues are positive.rdaximums
a critical point with both eigenvalues negative anshddlehas one positive and one negative

eigenvalue.

3.2.2 Reeb Graphs

The Reeb graphof f is obtained by contracting connected level set componenfmints.
Nodes in a Reeb graph correspond to critical point$,adee Figure 3.1. Far € R, a level
set atc is the preimage ~1(c) (see Section 2.4.2). The level ssigseepthe domain as we
increasec over the range of the functioh. During a sweep over the domain, the topology

of the level set changes at critical points fof If the sweep is in the direction of increasing
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ﬂ Level sets of f

o
&7

Jacobi set

Figure 3.2: Jacobi set of analytic functiohs= x> 4 y? andg = x defined oriR?. The gradients
of f andg align on the Jacobi set.

function value, level set components are created at mirtimest, merge or split at saddles, and
are destroyed at maxima. Given a sweep direction, saddlgdenelassified as split or merge

saddles depending on the change in the topology of levebsétese points.

3.2.3 Jacobi Sets

The Jacobi sebf two Morse functiond andg defined on a 2- manifol¥l is the collection of
points where the gradients of the functions align with eableioor one of the gradients vanish
(see Figure 3.2). Alternately, the Jacobi set can be dessteb the collection of critical points

of the family of functionsf +Ag,A € R:
J={xe M| xis acritical point off + Agor of A f +g}

Note that the Jacobi set contains critical point$ ahdg. Edelsbrunner and Harer [3] used this
alternate description to compute Jacobi sets of piecewisar functions. They also showed

that the Jacobi set of two Morse functions is a smoothly emédd.-manifold inVI .

3.3 Simplification

We prefer to use the description of the Jacobi set as thedetef a gradient-based comparison

measure [14] because it leads us to a natural algorithm fopating Jacobi sets. L& be a



Chapter 3. Simplification of Jacobi Sets 17

Figure 3.3: Offsetting a level set componeheft: Level set components on the manifold.
Right: Offsetting a level set component (blue) to another compb(red) along an edge of
the Reeb graph.

2-manifold smoothly embedded ®®. Thelocal comparison measurey, at a poinix € M for
two Morse functions andg is defined aky = ||Of (x) x Og(x)||. AssumingM is orientable,
we define thesign extended comparison measwe, at the pointx with unit normalr’ as
ko(f,g) = (Of x Og) - A. The sign extended comparison measure is a function defindteon
manifoldM and the Jacobi set can be described as the set of points wperuals zero, i.e.
the zero level set ot J = k; 1(0) = k$ " (0).

The Jacobi set often contains spurious loops because & angdegeneracies in the data.
Simplification of the Jacobi set refers to the reduction imber of components af with
minimal change to the relationship between the two inputtions.

The relationship between the functions is quantified byglobal comparison measure
which is equal to the comparison measure integrated oven#refold and normalized by the
total area [14].

1

= vea) | SO
xeM

wheredA is the area element at
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3.3.1 Offsetting Components

The Jacobi set components are altered by computing offgeit $et components. Legi and

P be two level set components such that their correspondingsgon the Reeb graph are
connected by a monotone path (path with monotonically exire) or decreasing function
values). The level set compongnis said to be offset t@' if it is replaced by the component
p’. The cost of an offset operation is equal to the hypervolufrteeswept region, which is

computed as an integral over the swept rediof the domain:

1

XeR

Figure 3.3 shows a level set component offset upwards by arliglumed. The direction
of offset is upward if the function value increases and doamotherwise. We simplify the
Jacobi set by computing offsets in an appropriate direction

The following basic offset operations are used in the sifiggliion process.

Merge. Two components whose edges share a common saddle are offsetsaddle so that
they merge. The merged componentis further offset by a sralaié resulting in a single

component.

Split. A component is offset to a saddle and is further offset by allsmafue resulting in a

split.

Purge. A component is offset to a local maximum or minimum. A furtio#iset by a small

value removes the component.
Create. A component is created at a local maximum or minimum and tffge small value.

Figure 3.4 illustrates the basic offset operations, usiregyReeb graph. The Reeb graph is
naturally suited to represent the offsets because it tthessonnected components of the level

sets. Only two operations result in a reduction in the nundfezomponents. Temporary



Chapter 3. Simplification of Jacobi Sets 19
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(a) Merge (b) Split
= =
x5
(c) Purge (d) Create

Figure 3.4: Different offset operations used during sifigaktion. All offsets are shown against
the Reeb graph ofy.

splits may be required to obtain a small number of componéMs ensure that the number
of splitting operations is lower than the number of compameerging operations. We show
in the next section that twice the total hypervolume swepinduthe operations is an upper
bound over the total change in relationship between thetiums

The first step in the simplification procedure is the compaoienf the Reeb graph far?.

Arcs in the Reeb graph that contain the zero level set are @éstified.

3.3.2 Greedy Algorithm

The required simplification is specified as a percentagesofikbbal comparison measure. The
corresponding hypervolume threshold, i.e., the total hygdame allowed for the operations is
calculated next. Since each simplification operation weslexactly one critical point, we can
represent an offset by a critical point. We first augment thetRgraph by inserting dummy
nodes at level zero. This augmented graph is transformedhinlirected graph by replacing

each aravwith a directed arav (arc fromu towardsv), if |k$| > |k, see Figure 3.5 . Each
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node is then assigned a prd#itv) given by

1 if vis a dummy node
P(v) =

in(v) —out(v) otherwise

wherein(v) andout(v) represent the indegree and outdegreg iof the directed graph. The
profit for a non dummy node signifies the reduction in numbedaafobi set components if
the operation corresponding to the node is chosen. The absimplification can now be
formulated as an integer linear program (ILP) that maximiefit. The variables in the ILP

correspond to nodes of the directed Reeb graph.
maxz P(V)Xy
subject to constraints

ZC(V)XV <T
Xy — Xy < 0 for a directed arav
Xu+Xv <1 u,vadjacent to a common dummy node

Xy, %v € {0,1}

The costC(v) for each simplification operation is the sum of hypervolurogthe incoming
arcs. T is the threshold given as input. A simplification operatismpéerformed on a node if
the corresponding variable in the ILP is set to one. The foastraint bounds the total hyper-
volume for the simplification. The second constraint erdsra dependency between variables
corresponding to a directed anw. This dependency captures the fact that a simplification
operation av can be performed only after a level set component has beset dffrough the
nodeu. At dummy nodes, there is a choice to perform an offset ireeitti the directions but

not both. This choice is modeled in the third constraint. Ttieis a variant of the knapsack
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Figure 3.5: Directed Reeb graph. The Figure 3.6: A Section of a Reeb graph
dotted line in the figure shows level with unreachable vertices shown in
0. The dummy vertices are shown in the boxed rectangle. The unreachable
black on the zero line. The profit for component prevents the algorithm to
each node is also shown. proceed beyond the merge saddle

problem with dependencies among objects. Though a soltgitime above ILP corresponds
to the optimal simplification, the computation is slow in ¢iiee. So, we resort to a greedy
strategy that chooses the least cost offset operation gt step until the threshold is reached.
The greedy strategy has an additional advantage; it endidegeation of a multi-resolution

representation of the Jacobi set.

The greedy algorithm requires all nodes to be stored in aifyrigueue. The priority queue
is initialized with all possible simplification operatioasd updated with new operations that
may become valid after an offset is performed. We define a nbtlee directed Reeb graph
asunreachabléf it cannot be reached by a path from a dummy noderaadhableotherwise.
Unreachable nodes may become obstacles that preventaptsettions. For example, a saddle
with an incoming arc from an unreachable node prevents agogrgration, see Figure 3.6. Let
G denote the directed Reeb graph ahdenote the subgraph & containing all unreachable
vertices. A component of H is a connected component in the undirected versiad.of he
cost of removingl is the sum of the cost of all edges Gfthat have at least one end point in
J. If the algorithm is not able to proceed due to some obstathes least cost components

of unreachable vertices are removed fr@wntil a valid operation is identified. Finally, we
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extract offset components using seed sets stored in the Ragel [8]. We also ensure that the
number of simplification operations with negative profitsnsaller than a constant fraction of
the operations with positive profits. This ensures that timalver of components decreases as

a result of simplification.

Procedurel niti ali ze

Input: Directed Reeb Grap6(V,E).
Returns: Initialized listL
1: mark all edgesive E as 'NONE'.
2: ListL < {¢}
3: for each dummy node do

4.  for each outgoing edgev from u do

5 markuv’'READY’

6: if all incoming edges of are marked 'READY'then
7 addvto L.

8 end if

9: end for
10: end for
11: return L

3.3.3 Implementation

The idea of the greedy approach is to schedule the best posditet operation that can be
performed. This would require all vertices to be stored imiarfty queue and updated with
new operations that may unravel after an operation is pegdr The NITIALIZE procedure
populates a list with all possible initial simplificationeqations. Marking an edge as READY
signifies a component’s readiness to be offset.

The SMPLIFY JACOBISET procedure greedily chooses the least cost operation and exe
cutes it. Marking an incoming edge as DONE signifies an dfigetlong the edge. We define
a node of the directed Reeb gra@hasunreachablef it cannot be reached by a path from a
dummy node andeachableotherwise. A saddle with an incoming edge from an unreaehabl
node prevents a merge. If we denéteas the subgraph @& containing all unreachable ver-

tices, a component dfl is a connected component in the undirected versioH .offhe cost
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ProcedureExt r act
Input: Directed Reeb grapB(V, E) with marked edges from Procedure
SIMPLIFY JACOBISET().
Returns: List X of components of the simplified Jacobi set.

1: ListK « {¢@}
2: for each node €V do
3: ifin(v) =0 or all incoming edges of are marked 'DONEthen
4 if out(v) = 0 or all outgoing edges fromare marked 'READYthen
5: addvto K.
6 end if
7. endif
8: end for
9: for each noderin K do
10: if vis a dummy nodéhen
11: add component correspondingua the Reeb graph tX.
12: else
13: for each outgoing edgew~ do
14: add component corresponding to a small constant offsegataro X
15: end for
16: end if
17: end for
18: return X

ProcedureSi npl i f yGraph

Input: Directed Reeb grapB(V,E), Sub graptH of G containing unreachable vertices.
Returns: Component after removing it fronG
1: J « least cost component frok.
2: if J# @ then
3: remove all vertices id along with their edges fror®
4
5

. end if
:return J
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ProcedureSi npl i f yJacobi Set

Input: Directed Reeb grap8(V,E) , List L from ProcedureNITIALIZE () and Threshold .
Returns: None
1: while T >0 do

2:  while emptyL) andT > 0do

3 J + SimplifyGraph

4 if J= @then

5: gotoline 35

6: end if

7: T =T —costJ)

8 for each edgeivwithue JveV —Jdo
9: markuv’'READY".
10: if all incoming edges of are marked 'READY’ then
11: addvto L
12: end if
13: end for

14:  end while
15:  Choosev from L with leastC(v) andC(v) < T
16: if no suchv exists then

17: gotoline 35

18: endif

19: for each incoming edgev do

20: if uis a dummy nodéhen

21: mark all outgoing edgesw, v # w 'NONE’.
22: removew from L

23: end if

24: markuv’DONE’

25:  end for

26: for each outgoing edgewv do
27: markvw’READY’

28: if all incoming edges oiv are marked 'READYthen
29: addwto L

30: end if

31: endfor

32:  removev fromL
332 T=T-C(v)
34: end while

35: return
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of a componengd denoted bycost(J) is the sum of the cost of all edges Gfwhich have at
least one end point ih. The SMPLIFY GRAPH removes a least cost component of unreachable
vertices fromG so that the simplification can proceed.

The final step extracts the simplified Jacobi set. Vertic&s ihat have all incoming edges
marked as DONE and outgoing edges marked READY represenintileoffset components

after simplification.

3.4 Analysis

In this section we show that twice the hypervolume sweptrapa simplification operation is

an upper bound over the change in the relationship betweeinpit functions.

3.4.1 Simplifying the input function

We do not change the function values in our experiments. Mewge now compute changes
to the functionf caused by a small offset in order to obtain the upper bourglirés 3.7a and
3.7b depict the changes to the functibrafter offsets in the up and down directions respec-
tively. An upward offset introduces critical points at E a@nof f restricted to level set | af.

To accomplish this, the function values at E and F can bedhsstged to becomé&(F) and
f(E) respectively. Within level set Il af, the critical points off move from B and C to A and

D respectively. The functiofi restricted to level set Il between A and D is made monotone to
achieve this movement of critical points. The function esat A and D do not change and
therefore the new pair have a reduced persistence. Dowrnffaet destroys the critical point
pair E and F and the restricted functiérbetween E and F is made monotone. The function
values at E and F are interchanged to becditte) and f (E) respectively. Within level set Il

of g, critical points move from A and D to B and C respectively.
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Figure 3.7: Simplifying the input function. The left colurshows a Jacobi set componédhnt
and its offset versiod! . The dashed lines are level sets of the functioifhe center column
showsf restricted to the level sets | and Il. The right column shdvesdimplified functionf,
that corresponds to the offset Jacobi set compoffent

3.4.2 Effect on global comparison measure

As shown by Edelsbrunner et al. [14], the global comparis@asure can be computed by
considering restrictions of one function on the isocordafrthe second function. The global
comparison measure in this form is given by
K—L/si ) f(v)d
~ Area(M) g S

ve]

wheresign(v) is defined as

+1 if vis a maximum off,, 1
sign(v) = l9-+(9(v))
—1 otherwise.
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Let J; denote thé!" component of the Jacobi set. Define

Ki:m / sign(v) f (vV)dg
vel

K can be interpreted as the contributionJpfo the global comparison measuke= 3 K;.
Since the change to the functidncorresponding to an offset is local to the region of the
component, we will now compute the changejrcorresponding to an upward offset. flf is

the modified function, the change kpis given by

2

Area(M)

/ sign(v) f.(v)dg— / sign(v) f(v)dg|.

vel] veli
Let R be the region oM swept during the offset ang; be the region where the level sets of
g do not intersec§; (shaded region in Figure 3.7a). The integral ajfetan be rewritten as a

sum of integrals over two regions:

541 = areq| | SO (do— [ sign)(vidg
velinRy veli (3.2)
+ / sign() f. (v)dg|.
veliN(R—Ry)

Consider the level sets | in Figure 3.7a. The difference betvenction values & andF can

be written as

E
f.(F) ~ £.(E) = 1(E) — £(F) = [ |0 dl.
F

Here, O f;(x) represents the tangential componentldf(x) along the level sets ardl is the

length element along the level set. The integradigh(v) f.(v) overJ; "Ry can be rewritten as
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an integral oveR; using the above expression,

[ signwt.(vdg= [ 191 didg

velinRy xeRy

Let du be the length element orthogonal to the level set. The ammaegit is given byldu.

Using the fact thatig= ||Cg(x)||du,

[ sionw)t.0dg= [[I0%lI0g09didu= [ [0 x DgdA

velinRy XeRy xeRy

- / KA. (3.3)

xXeRy

Consider the level set Il af in Figure 3.7a:
A
f(A) = f(A) = f(B)+/Hth(x)\|dl
B

and c
(D)= 1(0) = 1(©) - [IITR(xdl.
D
Combining the above two equations,
(f(C)—1(B)) — (f.(D) — £.(A) =(f.(A) — f(B)) + (f(C) — £.(D))

A Cc
= 10t d1+ [ |90 .
B D
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Figure 3.8: Consider the vertexand its adjacent vertices as a point set. The neighborRood
of a vertexv on a piecewise linear surface is represented by the Voregomn ofv.

All pairs of pointsA,D € Ji N (R—Ry) have a corresponding pdxC < Ji. So, we have

| sien.wdg- [ signv)f(vdg

veJiN(R—Ry) veli

— /[ 19tel10gedidu
)

xe(R—Ry

_ / KA. (3.4)

xe(R—Ry)

Substituting (3.4) and (3.3) in (3.2) and using the triangézuality,

10ki| <

/KXdAX: 2H.

2
Area(M) !

The above inequality can be similarly derived for the dowrda@ffset. Thus, the hypervolume

is a conservative estimate of the change in relationshipdmtf andg caused by an offset.

3.5 Implementation for Piecewise Linear Functions

Scalar scientific data is often represented by piecewisgatifunctions on triangle meshes,
where the gradient and henkg is not defined at vertices of the mesh. Given a vevtekthe
triangle mesh, its neighborhood is the Voronoi region aswha Figure 3.8. Meyer et al. [18]
used the Voronoi region to define discrete differential apms with minimal numerical error

for triangulated surfaces. L&i, To,-- -, T; be triangles that intersect the neighborh&bof v.
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The sign extended comparison measki?ds constant within each of the regiofisTR. We
follow Meyer et al. to define as the average value of the sign extended measureRpver

1 t

s s

— z SAreaT NR
Kv Area(R) kPArea(TiNR),

WhereKiS is the value of the sign extended comparison measure at etpatdies in the interior
of Ti. Note that the gradients dfandg are constant in the interior of a triangle and herge

is also constant within a triangle. The sign extended corspameasure is stored at vertices
and a linear approximation is used within the edges andgiesn This approximation does not
introduce significant artifacts in practice. The zero lesgilcan be extracted using a marching

triangles algorithm or from seed sets computed using a Regihgifxy.

3.6 Applications

We demonstrate the usefulness of the simplified Jacobi &&f two different applications.
Our approach to the definition and simplification of Jacolts s& particularly useful when

studying the relationship between two functions usingrthedients.

3.6.1 Visualizing Silhouettes

Given a view directior in R and a 2-manifoldVl embedded smoothly iR3, the silhouette is
the set of points itV where the tangent plane is parallelkoConsider a Cartesian coordinate
system with thez-axis along the view directiod. The Jacobi set of the two scalar fields
f(x,y,2) = xandg(x,y,z) =y is the required silhouette. The silhouette of a model of #mech
lis shown in Figure 3.9¢c. The model is shown in the originaéot@tion in Figure 3.9a. The
view direction is perpendicular to the plane of paper. Thertation of the model has been

changed for a better view of the computed silhouette in leig3r9b and 3.9c. As seen from the

1The models of hand and torso were downloaded from the AIM@BEA repository
(' http://www.aimatshape.net/).
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(b) (c)

Figure 3.9: Silhouettes. (a) Model of a hand in its originaéotation. (b) Silhouette when
viewed from a different angle. (c) Simplified silhouette.

figure, the silhouette has many components that are uniamgaraused by small bumps in the
model and the silhouette itself appears to contain noise sliplification process removes
small components because their removal does not adveftstythe relationship between the
fields f andg used to compute the silhouette. We found that simplificaiiging 2% threshold
removed all noise. The Jacobi set was simplified using thedyralgorithm. Similar results

are shown for another model in Figure 3.10

3.6.2 Combustion

We apply our algorithm to study a time varying dataset froeghmulation of a combustion
process.? This application demonstrates the use of simplificationmhandling degenerate

data. Degeneracies occur whenis zero within a region, resulting in the Jacobi set contagni

2We would like to thank Jackie Chen and Valerio Pascucci fovipling the combustion data .
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(b) (c)

Figure 3.10: Silhouettes. (a) Silhouette computed on thaainaf a torso. (b) Zoomed-in view
of the model with noisy silhouette (c) Simplified silhouette
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Figure 3.11: Combustion. (a) Jacobi set of &hd G in the 64th time step. (b) Simplified
Jacobi set. (c) Concentration 0pO
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higher dimensional parts. During simplification, Jacoldi @@mponents within degenerate
regions are automatically removed because they do notibotgrtok.

The dataset consists of the concentrations gfu#l) and Q(air) defined on a 600x600
grid for 67 time steps. We compute and simplify the Jacobifeet, and G at different
time steps to identify the front of combustion. Combustiogibe at regions where the fuel-
air mixture is appropriate for ignition. The data is degateraway from the front, thereby
introducing noise in the Jacobi set.

Figure 3.11 shows the results for the 64th time step whendh#astion is in its final stage.
The simplified Jacobi set again appears at the front. FigdrkcEhows the ©@concentration.
Blue signifies a low function value and red signifies a high fiomcvalue.The front consists

of the boundary of red regions, which is also traced by thekiiad Jacobi set.

3.7 Conclusions

We have described an algorithm for simplifying the Jacobioféwo Morse functions. The
algorithm is robust because it ensures minimal change toetfla¢ionship between the two
functions (bounded change to the global comparison megasiiee Jacobi set can be dis-
played at different levels of simplification due to the natef our greedy algorithm. This
allows for a representation of the Jacobi set with diffetemels of simplification (multi-level
representation). Future work includes extending the &lgorto multiple functions and higher

dimensions.
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Relation-aware Isosurface Extraction

In the previous chapter, we used the comparison measurertpute and simplify the Jacobi
set. In this chapter, we describe a new technique that usethparison measure to identify

important isosurfaces in multifield data.

4.1 Introduction

The design of interactive and useful techniques for mwtdfdata remains a challenging prob-
lem. Scientists hope to understand the underlying phenarbgrstudying the relationship
between several quantities measured or computed over amofmaterest. Therefore, multi-
field data is ubiquitous to all scientific studies.

Naturally, the design of analysis and visualization teqgbhes for multi-field data will ben-
efit by studying the relationship between fields as opposeal flacused study of inherent
properties of individual fields. We follow this principle tievelop a relation-aware method for
exploring scalar multi-field data.

Identification of important isovalues of scalar fields is dlwéudied problem. Current
approaches focus on individual scalar fields and study geanpeoperties of the isosurface
like surface area or enclosed volume, or study the topadbgioperties abstracted into a Reeb

graph or contour tree. We study this problem in the contertuiti-field data. Specifically, we

34
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introduce a variation density function, whose profile is agjmdicator of interesting isovalues
of individual scalar fields in a multi-field dataset.

There is no unique definition for the relationship betweancfions in the literature. The
alignment of gradients is widely used within the visuali@atcommunity to quantify relation-
ship between scalar fields [2, 3, 4]. We follow this approactt ase the comparison measure
proposed by Edelsbrunner et al. [3] to measure the reldtipietween different scalar fields.

For a given scalar fielfl and a sub-collectioA of scalar fields from the multi-field data, the
variation density function measures the relationship betwscalar fields iA over isosurfaces
of f. Similar to Edelsbrunner et al. [3], the variation densitgdtion quantifies the relationship
between multiple scalar fields by comparing their gradie@sr hypothesis is that extrema
and regions of rapid changes in the profile of the variatiomsdg function are indicative of
interesting features or events in the data. Experimentsata flom different applications
indicate that our hypothesis is indeed true for these dasa se

Our contributions include a relation-aware approach tatifieation of interesting isoval-
ues of a scalar field in a multi-field data set, a successfuicgtpn of this approach to explore
data from diverse application domains and a demonstrafitimecadvantages over analyzing
scalar fields in isolation. Central to the data exploratioocpss is a variation density func-
tion that measures the relationship between scalar fielteidata. We derive links between
the variation density and well understood measures likeltgfical persistence and isosur-
face area statistics. We also describe a simple algorithcotgpute an approximate profile
of the variation density function, which provably convesde the true profile with increasing
sample size. Finally, we show that our approach can be usexfféxtive exploration of both

simulation and measurement data from a wide variety of egfiin domains.

4.1.1 Related Work

Bajaj et al. [8] introduced the popula@ontour spectrumas a method for exploring scalar

fields by studying distributions of metric properties likeea, volume, and their derivatives
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and integrals. Early approaches to identification of irdeng isovalues study the histogram
of the scalar field [22, 23].

Carr et al. [7] showed that histograms suffered from many weftces because they were
equivalent to nearest neighbor interpolant and suggesisthef isosurface statistics computed
with higher quality interpolation. Scheidegger et al. [pdpposed an improved formulation
of isosurface statistics by weighting it with the inversadjent magnitude. This essentially
means that the value of the statistic reaches infinity if ttaelgnt vanishes. We fill this minor
gap in the definition of the variation density function by kexting critical values. However,
this does not affect the utility of the variation density étion because we include the criti-
cal values while computing the variation density profile pogcewise linear input functions.
Both Carr et al. and Scheidegger et al. mention an applicafisosurface statistics to iden-
tification of interesting isovalues. Isosurface statsstionsiders geometric properties of an
isosurface to determine its importance. For multi-fielcag#fte importance of an isovalue ad-
ditionally depends on the interaction between the diffefetds. In this regard, our method
can be considered a generalization of their work to multdftata. Section 4.5 describes this
generalization in detail.

Structures like contour trees [25], and more genericallytRgaphs [26], provide an ab-
stract representation of topological changes in isosasfaf a scalar field as we sweep the
domain in the direction of increasing / decreasing scallreval he Reeb graph has been used
as an interface for flexible extraction of individual compats of interesting isosurfaces [27].

All the above methods are oblivious to other scalar fieldshas data and hence do not
consider relationships between fields. So, these methogsotde effective in the study of
multi-field data.

Gosink et al. [2] present a method that allows visualizatbimteraction between three
scalar fields by studying the correlation between two fields esosurfaces of the third field.

Their approach allows the classification of isosurfacestiwb classes, primary and secondary,
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but does not provide further information to allow the id&oéition of a smaller set of inter-
esting isovalues. They design the method to be used witkirireimework of Query-Driven

Visualization, which benefits from user queries.

4.1.2 Outline

Section 4.2 reviews the necessary background on compamsasure, defines the variation
density function, and describes its properties. SectiBrdéscribes an algorithm to compute
the variation density profile. Section 4.4 reports resultsxperiments on 2D, 3D, and time-
varying multi-field data. Section 4.5 discusses some ptgsanf the variation density function

and an interesting variant. Section 4.6 concludes the paper

4.2 Variation Density Function

The variation density function measures the relationslegvben multiple scalar fields over
isosurfaces of one of the input scalar field. The relatignshiguantified by the comparison

measure introduced by Edelsbrunner et al. [3].

4.2.1 Comparison Measure

Let M be a smooth compactdimensional Riemannian manifold. LBt= {fq, f,..., fx}
be a set ok < n smooth real-valued functions defined bhy f; : Ml — R. The comparison

measurefor F, over a domaib C M, is defined as the normalized integral

/del/\dfz/\.../\dka,

xeD

1
ko(F) = vol(D)

wherevol(D) is the volume ofD anddfy Adfo A ... Adfy is the wedge product of thie
derivatives. ky(F) is called theglobal comparison measureWhenD shrinks to a point

x € M, we get thdocal comparison measurex(F ), in the limit. The productkp(F) - vol(D),
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Figure 4.1: Isosurfaces shownfatl(r) and f ~(r + &r) whenn = 3. It is always possible to
choose a local orthonormal coordinate system such thatamgeht vectonaix3 is aligned with
the gradient off. From the definition of gradients, it follows that = || f (x)||dxs.

can be used to quantify the relationship between the diftdtactions inF. Whenk=n=2
andM is smoothly embedded iR® with the standard Euclidean metrig,(F ) is the length of

the cross product of the two gradientxat

Kx({f1, f2}) = |0F2(x) x Df2(0)]].

4.2.2 Definition

For a smooth functiofi : M — R, areal numbecis a critical value if for some € M, ||Of (x)|| =
0 andc = f(x). LetP C R denote the set of non-critical, cggular, values off.

Define a scalar functiogy : F x 2F x P — R as

B Kx(A)
wtan= | joigs

xe f=1(r)

wheredS is then — 1 dimensional isosurface area element. We assume thaedlitictions

in F have a finite number of critical values. Given a regular valuge can therefore choose
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an intervall : [r,r + dr] that contains no critical values. We claim that

|/ wtAndr= [ k(A

xe f=1(1)

= Ke-10y(A) - vol(f~H(1)), (4.1)

whered\k is the volume element. Sgj(f,A,r) can be considered as the density of the varia-
tion between functions in the saAt Hence, we callp thevariation density functionWe now
prove (4.1) from first principles.

Consider a local coordinate systém, Xy, ...,Xn) atx such that the unit tangent vectors
((;,ix1 % )form an orthonormal basis. The volume elemaé¥it equalsdx = dx;dx. .. dX,.
Assume, without loss of generality, that the finst 1 basis vectors lie on the tangent plane of
f~1(r) atx and the last tangent vector is aligned witli(x) (see Figure 4.1). We transform the
coordinate system atto (x1,Xo,...,X,—1, f(X)). The volume element in the new coordinate

system is obtained by multiplying with the Jacobian deteant, which is equal to the length

of the gradient|Jf (x)||. Therefore

dxqdXp...dx,_1dr

d\ =
" 18T

Now,

/L/J(f,A,r)dr :/ / (/?()Hd

I I xef-1(

(A)
_ / / (X>de1dx2...dxn,1dr.

I xef-

Rewriting the double integral as a single integral ofet(I) and using the above expression

for d\, we get the desired equality in (4.1).
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Og(x

Figure 4.2: Isocontours of whenn = 2 andF = {f,g}. The isocontourf ~1(r) shown in
green, has critical points of the restricted functganat the points shown in red (maxima) and
blue (minima). Thap function is the sum of persistence values of the criticahfwi It also
captures the total variation gf on the isocontour.

4.2.3 Variation Density and Total Variation

In this section, we motivate the use of variation density lhgveing that it captures the total
“variation” of a function restricted to an isosurface of titber. Specifically, we show that, for
the special case of smooth functiohandg defined on a 2-manifold, the variation density is
equal to the difference between the sum of values at maximaramma ofg restricted to an
isocontourf ~%(r). However, it is not clear how to extend this result to the aafseultiple
functions defined on a higher dimensional manifold.

Letr be a regular value of. The isocontourf ~1(r) is a smooth curve embeddedN.

So, we have

wir(fapn = [ IS,
xef

)
= [ 1Baeldk 42

xef-1(r)

wherelg (x) is the component dflg(x) along the tangent t6=1(r) atx, anddly is the length
element off~1(r) at x (see Figure 4.2). Leg. be the function obtained by restricting the

domain ofg to f~1(r). The derivative ofg, vanishes at a critical point. Critical points are
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Figure 4.3: (a) Color map of functiofy. Blue and red regions indicate low and high function
values respectively. (b) The variation density profilefef ¢ (fo,{fo, f1},r) with f1(x) =
IIx—2||. The jagged boundary of the shaded region is an artifactiofyus discrete domain
for computation. (c) The variation density profile &f, @(fo,{ fo, f2},r), showing peaks at
depressions of,.

either maxima or minima assuming the second derivatig oioes not vanish at such points.
Applying the fundamental theorem of calculus to each regfoft1(r) whereg, is monotone,
we rewrite the integral of g (x)|| over the isocontouf —1(r) as the difference between the
sum of function values at maxima and minimagef In other words, ifC is the set of critical

points ofg., then

[ 1Pl = 25 sionvg. (v 43)

xef=1(r)
wheresign(v) is either+1 or —1 depending on whetheris a maximum or minimum, respec-
tively. Thus,y is equal to the total variation @f. over the isocontouf ~*(r).

The sub-level sebf a real valuesis the union of pre-images of all real values less than or
equal tos. Consider the sub-level sets@f as we sweeg —(r) in the direction of increasing
value ofg,. New components are created at local minimagof Components of the sub-
level set merge at all maxima except for the global maximuraraithe sub-level set is equal
to f~1(r). We represent each sub-level set component by its oldegtonin. When a merge
happens at a maximum, we pair the maximum with the youngéedito minima representing

the two merging components. The global maximum is pairet thig¢ global minimum. The
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persistenceof a critical point is equal to the absolute difference induon values between
the critical point and its pair. Persistence of a criticainp@air represents the lifetime of a
feature,i.e., the time between the creation and destruction of a comganeit(r) during
the sweep process. Long-living components that have hjggrsistence values are considered
to be more important.

In recent years, the notion of persistence has been usedasungg order, and simplify
features [14, 17, 28, 29, 30]. This measure has been showa ttable in the presence of
noise assuming a bottleneck metric and the functions are fatj. From Equation (4.2) and

Equation (4.3), we know that

W(fa{fvg}7r) :ZZSigmwg*(V)- (4.4)

Since every critical point is counted twice in the above egpon,y(f,{f,g},r) is equal to
the sum of persistence values of all critical pointsgpf The variation density functiog,
therefore, represents the total importance of all subtstecomponents af, in f~1(r). This
equality also suggests that we can expect the variationitgeinsction to be insensitive to
small perturbations ig. This is because a small perturbation applied to the functiplies a
small perturbation applied to the restrictiongaf Now, g. and its perturbed versions are close
to each other under the, metric, which implies that the persistence values of theiical
points, and hence their sum, are close to each other. Ndtththtunction is tame because we
assume that it has a finite number of critical values.

Finally, note that the integral of the expression in Equaf#.4) over all isovalues of is

eqgual to the global comparison measure as shown previoydigiblsbrunner et al [3].

4.2.4 Variation Density Profile

We are interested in the plot of variation density for a gigealar fieldf and a subsef

of scalar fields. The observation that the integral of theati@an density over all isovalues
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is the global comparison measure motivates us to study titeoplariation density against
isovalues. We can consider the profile of the variation dgm@s a plot of the contribution to
the global comparison measure from the level sets of thawsield. Giverk scalar fields, only

a few of thek2X possible plots are interesting. This choicefodind f is typically determined
by the application. Prior knowledge of potential interantbetween the scalar fields can help
us make an informed choice. Each plot can provide cues ti@timédentifying interesting
isovalues. The following examples are aimed at providingifion behind the use of the
variation density profile.

Consider the following analytic functions defined BA.

fo(x) = [IxI,
f1(x) = [Ix—al,

f2(X) = —(Gay (X) + Gay (X) + Gag(X))-

Wherex, a,a;, &, a3 € R? andGy (x) is a Gaussian with a low standard deviation centered at
8. The isocontours ofy and f; are circles centered at origin and the paantespectively.
Consider an isovalue < ||a|| of fo. The value ofy(fo,{fo, f1},r) can be calculated from

using Equation (4.4) to berdlf r > ||a

, we havey(fo,{fo, f1},r) = 4||al|. The functiony,
therefore, increases linearly wittill the isovalue||al| and then becomes constant.

If we considerfy to be elevation and, to be atmospheric pressurg would tell us that the
variation in pressure at all points with the same elevatimngases linearly till heightal| and
remains constant for higher elevations. The pressure sgipreat elevatioifja|| is captured
by a knee in the graph ap, see Figure 4.3b. Note that the corrected isocontour pé&gime
statistic [24] would assign the same value in the statistaply for each isovalue df. This
follows from the fact that the ratio of the perimeter of arcisotour to the length of the gradient
of fo on the isocontour is the same for all isocontours.

The functionf, has three depressions at distangag|, ||a|| and||ag|| from the origin.
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ff*gr(:S or) f=(r)

Figure 4.4: Computation ap for a two dimensional simplicial complex. The shaded region
indicates the area corresponding to a pin+ or]. This region is a small strip if the bin is
contained within the range dfrestricted to the triangle. The entire triangle is shaddugtbin
contains the range df restricted to the triangle or if the triangle is degenerétée bin and
the range off have a non-empty intersection but do not contain each atven, the shaded
region contains one or two vertices of the triangle.

Figure 4.3a shows a color map &f with depressions (blue regions) centered at distances
1,2 and 3 from the origin. The functiofp is nearly constant at all points far away from the
depressions. The variation &f on an isocontour ofy is nearly zero if the isocontour does not
pass through any of the depressions. The variation is mawiomwisocontours ofy passing
through the depressions. This results in peaks in the @midensity profile (see Figure 4.3b).

In both the examples, select isovalues@are found to be interesting only after studying the

relationship between functions.

4.3 Computation

In this section, we describe the computationfoivhenF is a set of piecewise-linear functions
andM is represented by amdimensional simplicial complex (see Chapter 2).

The gradient of a piecewise-linear functidépis well defined in the interior of a simplex
and is a constant vector becausgds linear within the simplex. The gradient vanishes inside
a simplex iff the function values at all vertices of the simphre equal. Note that a constant
gradient implies that the local comparison measure is aaetant in the interior of a simplex.

For a smooth functiorf, we first divide the range of into a fixed number of intervals
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called bins. For an interval= [r,r + dr], define

| Kx(A)dx

where|l | is the length of the intervdl The functiony(f,A, 1) is well defined even if contains

a critical value. Note that

r4or

[ w(f,Ar)dr
f.Ar)=1li r
Yt AT) 5:1]0 or
| Kx(A)dV
— lim —O
dr—0 or

Therefore, in the limit, whefl | — 0, ¢y converges tay( f,A,r) at a regular value.
For a piecewise-linear functiofy,, we compute the integral in Equation (4.5) as a summa-
tion:

(fp,Al) = % zk Ko *vol(interior(a) N f, (1)),

wherek, is the value okky for anyx € interior(o) (see Figure 4.4). Note that for piecewise-
linear functions, the local comparison measure is a piesgwonstant function. Therefore,
Kyx is the same for any € interior(o). The procedure GMPUTEPSI computes the variation
density profile for a given bin width. The procedure is easily parallelizable because the com-
putation for each simplex is independent of other simplidédge time required for a simplex
inside the outer loop depends on the range of the functianictesl to it andh. The worst
case complexity is therefor®(mn), wherem and n are the number of bins and simplices

respectively.
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Procedure COMPUTEPSI ( fp,A,h)
Initialize @(fy,A,l) < 0 for all binsl

for each simplexo € K do
R« range offp, restricted too

for each binl such thaRN 1 # @ do
‘l_/(fpaAJ) — ()U(fp?Aal)
Ko «vol(fy1(RN1)Ninterior(a))
h

end for

end for

4.4  Applications

We study a variety of data using the variation density fuorcti Our implementation works

directly on simplicial complexes. If the input domain is gahble as a rectilinear grid, we first

subdivide it into simplices by inserting diagonals and gpalthe corresponding piecewise lin-

ear function. Area and volume are computed using the QHarthty (http://www.ghull.org).

We have also parallelized the computation using Opeh(ittp://www.khronos.org/opencl/).

The software is available for free from http://vgl.sesciernet.in/software/software.php?pid=002.
We use a fixed number of bins (100 or 200) in all our experimehite focus on local

maxima, minima and regions of steep gradients in the prafilerder to identify potentially

interesting isosurfaces. In all experiments, we compareeasult with the isosurfaces identi-

fied using the corrected isosurface area statistic [24].
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Figure 4.5: Profiling isocontours of oxygen during a comiaumssimulation. (a)y computed
with f = O, andA = {Oy,H> }. (b) Isocontour of @ at 1010, the global maximum af.
Isocontours of oxygen in the rang800 1400 belong to the front of combustion. (c) Color
map of oxygen with red and blue areas indicating high and lomcentrations respectively.

4.4.1 2D Combustion

We first experiment on a 2D combustion simulation dat&lydrogen fuel at 300K is mixed
with an oxidizer (21% oxygen) at 1200K. The goal of the sirtiokais to study the influence
of turbulence on the different phases of combustion. Whempcessed, the fuel ignites at mul-
tiple spots because of the inhomogeneity in the air-fuér&epending on the air-fuel ratio,

the flame either propagates in an outward direction fromgh#ion spot or burns out [19, 32].

1shantanu Chaudhary wrote the implementation using Opeatoimputing the variation density profile on

GPUs.
2We would like to thank Valerio Pascucci and Jackie Chen foviing the combustion data.



Chapter 4. Relation-aware Isosurface Extraction 48

The combustion is simulated on a plane over 67 time stepsirplu data comprises of three
scalar fields defined on a 600 x 600 grid for 67 time steps. Thes\af the first field at each
point indicates the progress of combustion at the point.chmeentrations of oxygen ¢gpand
hydrogen (H) are the other fields.

The concentrations of Hand G are nearly constant away from the front of combustion.
Also, the gradients of the two functions are aligned in theggons. The comparison measure
is therefore zero in these regions. The variation densityxgfien or hydrogen will therefore
have non-zero values only for isocontours passing throlglfront.

For this experiment, we consider thel'sme step as our input domain. The combustion
is in its later stages in this time step. We profile the isocorg of oxygen considering its
relationship with the fuel (hydrogen). This is accomplidiy choosingA = {O2,H>}. The
variation density profile is shown in Figure 4.5a.

We observe from the profile that it increases to a maximum whenoxygen level is
approximately 800 and remains high till the oxygen levelppraximately 1400. We notice
a gradual decline for higher isovalues. The isocontoursxgfen in this rangé800,1400)
belong to the front of the combustion. However, this infotiora cannot be directly inferred
from the isosurface statistic. Figure 4.5b shows the istmeorof O, at the value 1010, the
global maximum ofy. The front is the region where the fuel is actively burning.

The scientists who designed the simulation commentedhleasbcontour based segmen-
tation of the ignition region or a burned out/extinction da@ useful in studying and under-
standing the nonlinear coupling that governs ignition axtchetion. The shape and size of the
segmented region and the correlation between the multifidealar fields computed within
the segment play an important role in the study. We also gbddhat the level of detail of the

front was higher at @concentration~ 800 compared te- 1400.
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Figure 4.6: Time varying combustion. (a) Variation dengtgfile with f =t, A= {t,0,}.
(b) Profile of with f =t, A= {H2,0,}. (c) Ignition: color-mapped image of the scalar field
pr og, which measures the completion of combustion. Red regiafisate high values and
blue regions indicate low values. The distributiorpafog in the 28" time step indicates the
regions where the fuel is ignited. (d) Burning: The distribatof pr og in the 529 time step.

4.4.2 Time Varying Combustion

Next, we show the application of the variation density fimctto time-varying data. We
consider the time varying combustion data described in teeigus experiment as a three-
dimensional data with timedefined as an additional scalar field. The fuel consumptite ra
at a point in a time step can be used to measure the progreembiistion at the point. This
information is available as a scalar functipnog.

The goal of this experiment is to identify important time pea of the combustion process.

The relationship that ©has with time changes during the important phases of conalougtor
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example, on every time slice before ignition, the conceiaimaof oxygen is nearly constant
everywhere and on ignition, oxygen begins to be consumestjains of ignition. We therefore
profile the isosurfaces of time with = {t,O,} (see Figure 4.6a). The profile successfully
captures the ignition and the burning phases of the condrugptiocess. The time steps-
27 tot = 35 in the data correspond to the ignition process. This isuca@ as a trough in
the profile. The burning phase (t=50 to t=55) is also captimgd maximum in the plot.
Ignition and burning are indeed considered to be the two napb phases of this combustion
process [32].

The interaction between £Oand H can also be considered to determine the different
phases. There is no real interaction betweena®d H before ignition. We ploty with
A = {O2,H2} hoping to find more information (see Figure 4.6b). The infation extracted
from this profile is essentially the same compared to thelprgfivith A= {t,O,}. The profile
begins to increase from zero during the ignition phase aaches a global maximum during
the burning phase. Isosurface statistics considers omlsngéic properties of a time slice and
hence would not be able to detect any of the above phases.x&mpée, the corrected area
statistic would give equal importance to each isovalue @amté the plot would be a horizontal
line.

The developers of the combustion simulation noted thatde®srable to identify and track
transient and intermittent events like auto-ignition amtinetion 3. They comment that our
approach of studying the relationship between the airshuglure over the non-local geometry

of the flame front is a new idea and could help attain furthsigints into flame interactions.
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Figure 4.7: Hurricane Isabel. In regions of low correlatimtween the fields (-100 pascals,
20 pascals) (a) the variation density function and (b) idase statistics behave similarly. The
two values are nearly equal at isovalue 7 pascals. (c) Isdtibe hurricane at 7 pascals.

4.4.3 Hurricane Isabel

Hurricane Isabel was a strong hurricane that struck the w#antic region in September
2003. We consider a simulation of this event [$3]The domain is a 3D rectilinear grid of
size 500x 500 100 corresponding to a physical scale of 203% 200&kmx 19.8km Eight
scalar fields are defined over this domain. This data is deforetB time steps corresponding
to an actual time of 48 hours. For experimental purposesoaie &t only pressure (Pf) and
temperature (TCf).

We study the isosurfaces of pressure at the first time stépAwvit {Pf, TCf}. During the
initial phase of the hurricane, the eye of the storm was &xtan the ocean. The swirling
motion around the eye corresponded to a low pressure redif pascals, 20 pascals). Tem-
perature and pressure have low correlation in this regién The variation density profile
shows an exponential increase for the isobars correspgmaliow pressure (Figure 4.7a).

A natural question to ask is “Under what conditions do thesustace statistics and the

variation density function produce similar results?”. heas of low correlation, we observe

3We thank Jackie Chen and Ajith Mascarenhas for their help interpreting the results of our experiments
on the combustion data.

4Hurricane Isabel data was produced by the Weather Reseaaildfoaecast (WRF) model, courtesy of NCAR
and the U.S. National Science Foundation (NSF)
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that the isosurface statistics plot (see Figure 4.7b) keshaimilarly. Both exhibit an expo-
nential increase in the region of low pressure. In fact, at@agmately 7 pascals pressure, we
observe that the two plots have nearly equal values. Thessriexental observations lead us
to believe that when the input fields have a low correlatibe,variation density function has

no added advantage over isosurface statistics.

4.4.4 Universe Simulation

In the fourth experiment, we consider the simulation of zaion front instability in the uni-
verse [34]°. The input domain is a 600 248x 248 rectilinear grid which is equivalent to a
physical volume of Bparsecx 0.25parsecx 0.25parsec The simulation is done over 200
time steps corresponding to .33 thousand years. The data has ten different simulatedrscal
fields: particle density, temperature (TCf), and eight cloatspecies including gaseous hy-
drogen (H), ionized hydrogeriH+) and ionized heliunjHe+).

The ultraviolet radiations from stars ionize hydrogen arggen present in space. This
ionization process slows down the photons, which now prde¢@ much slower pace behind
a radiation wall known as the ionization front. This fronpaeates the hot gases 0000K ),
which are in an ionized state, from the ambient space at 72 K.

We study the impact of each of the chemical species on thertapee of isotherms. We
first study the effect of H. Since hydrogen is in the ionized state, we expect to finddlewant
isotherms at high temperatures. This is indeed the casd-(gaee 4.8b). The profile peaks
in the temperature range 14000-16000K, which is the tenyperaange in which hydrogen
is ionized. We get similar results for ionized heliud £ {TCf,He+}) (Figure 4.8c). The
temperatures relevant for gaseous hydrogef (Figure 4.8d) were found to be 2000-15000K,
after which the plot goes to zero. This is in accord with thewn fact that hydrogen is

typically in the ambient statex(72K) or shocked statex2000K). Above 15000K, hydrogen is

SUniverse simulation data was produced by Daniel Whalen atAlamos National Labs and Michael L.
Norman at San Diego Supercomputer Center.
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Figure 4.8: Universe Simulation. (a) Isotherm statistifls) The profile ofy plotted with
A= {TCf,H+}. Most of the area under the curve is centered around thesitoiztemperature
of hydrogen. Similar results are seen in (c) wifea: {TCf,He+}. (d) The profile ofy with
A= {TCf H,}. Hydrogen in the temperature range 72-14000K is in eithet oo shocked
states. (e) Isotherm of universe at 3000K which lies in tingeavhere hydrogen is in shocked
state. (f) Isotherm of universe at 14500K which lies in thegeawhere hydrogen and helium
are ionized. (g) Isotherm of universe at 19500K which liesh@ range where hydrogen is
already ionized and there is no other significant event.
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primarily in the ionized state. Isotherms in Figures 4.B(eerrespond to isovalues identified
from the variation density profile. These isovalues belanganges where hydrogen is in a
shocked state (Figure 4.8e), hydrogen and helium are idrfizgure 4.8f), and where there
is no specific interaction between temperature and therdifteelements (Figure 4.8g9). The

geometry of the isotherm has no particular interpretatiotié best of our knowledge.

4.5 Discussion

The derivation of isosurface statistics by Scheideggel. ¢§24] may also be extended to de-
velop a relation-aware statistic. In the case of three dsieral domains, isosurface statistics
considers the volume enclosed by the isosurfdcegr) and f ~1(r + dr) asér approaches
zero. Normalizing this volume by the volume of the manifolk get a probability density
function that measures the probability that the scalar &sklimes values betweeandr + or
asor approaches zero. Clearly, the profile of this probabilitysigrfunction is the same as
the isosurface statistic. However, the notion of a prolitgldiensity function can be extended
to two fields.

When two fields are available, we may consider the joint pridibaldensity (JPD). Ra-
jwade et al. [35] use therDfor two scalar fields in the context of computing mutual imh@a-
tion and solving the image registration problem. The sdadtds are essentially grayscales of

the two images that are to be registered. They show thatrthequals

dx

a1,07) = ’
p(a1, a2) 10f (x) x Og(x)|
{x/f ()=a1}n{xlg(x)=az}

wheref andg are the scalar fields, amd anda; are isovalues of andg respectively. TherD

is essentially the continuous scatterplot recently inicadl by Bachthaler and Weiskopf [36].
Note that this integrand is equal to the inverse of the locahgarison measurey, which
suggests a direct extension to multiple fields.

We also observe that the isosurface area statistic [7] addirected statistic [24] can be
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derived as special cases of the variation density functfdhe setA contains a single element
f, the scalar field under consideration, then the local corpameasurex({ f}) = [|[Of(x)]|.

This implies that the variation density function

Wt (= [ ds,
xef=1(r)
which is exactly the isosurface area statistic derived by €al. Now, consider the case when
Ky IS a constant function, which essentially means that we havadditional information on
the relationship between the scalar fields. In this casevdhation density function reduces
to the corrected isosurface statistic.

The derivation in Section 2.3 indicates that the variatiemgity function is not likely
to be susceptible to noise, especially when the dimensigheotiomain is less than three.
The derivation, however, extensively utilizes the propénat regions in an isocontour can be
broken into monotone paths of the restricted funcgipomesulting in a closed form expression
for the integrals. It is unclear if such an approach can bergd to higher dimensional

domains.

4.6 Conclusions and Future work

We have introduced a variation density functigrno profile isosurfaces based on relationships
between different scalar fields in multi-field data. We alesatibed an algorithm to compute
the profile. The fact thafy captures significant information that is typically not aaed by
isosurface statistics is evident from our experiments wéberal data sets from diverse real-
world applications. We also conjecture that for fields waw lcorrelation iy may be no better
than isosurface statistics.

We list the following problems as future work:

e Characterizing the link between persistence and variagositly in higher dimensions.
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e Extension of our results to arbitrary number of scalar fiel@sirrently, the number of
fields that can be compareie the size of the sed) is bounded by the dimension of
the domain. This is primarily because the comparison measamsiders the alignment
of gradients of the fields to determine relationships. If tiienber of fields is greater
than the dimension of the domain, the gradients becomerlindapendent and hence
the comparison measure is zero everywhere. One solutiorc@isider only a subset of
fields at a time and then collect the different statisticetbgr in a well defined way. In
Chapter 5, we describe a new multifield comparison measutalibas the number of

fields to be compared to exceed the dimension of the domain.

e Extending the definition of the variation density functionvector fields will be a chal-
lenging task because the comparison measure cannotliribalextended to compare
vector fields. We define a new multifield comparison measwaedan be extended to

multiple vector fields in Chapter 5.

¢ It would be interesting to see if single scalar fields can bdistd more effectively using
our approach. This would involve identifying suitable ded fields that can be used to

profile the input scalar field.



Chapter 5

Multifield Comparison Measure

In Chapters 3 and 4, we noticed that the local/global companseasure could compare scalar
fields only if the number of fields did not exceed the dimensibtine domain. In this chapter,
we define a new gradient-based multifield comparison medlatean compare an arbitrary

number of scalar fields.

5.1 Introduction

Data from present day simulations and observations of phlygirocesses often consists of
multiple scalar and vector fields. Studying the interactibetween the fields is pivotal to
understanding the underlying phenomenon.

Single scalar fields are typically studied using technidikesisosurfacing, direct volume
rendering and contour trees [22, 25, 27, 37, 38]. When vizgnglimultiple scalar fields, the
above methods can be used separately on each field and zeslsie by side or as overlays.
The relationships and interactions that exist between éhdsfiare often not captured by such
methods. Simultaneous visualization of all the fields fets the understanding of interac-
tions and relationships between them. This can be accameplisy employing a comparative

approach to capture the relationships between variables.

57
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5.1.1 Proposed Approach

We present a new gradient-based comparison measure far fe#ds that is applicable on an
arbitrary number of scalar fields defined on a manifold. Thasuee captures the extent of
alignment of the gradient vectors at a point. The distridoutsf the measure over the domain
provides key insights into the interaction between inpdd§ie The measure satisfies various
desirable mathematical properties, can be computed eifigieand is practically useful for
studying relationships between multiple scalar fields. \phathis measure for analyzing
a hurricane simulation data set and a global climate sinanatata set. The analysis helps
explain various known meteorological and climatic phenoaéNe also demonstrate the ef-
fective use of an aggregated version of the measure to thdg sfua combustion simulation
data set.

The main contributions of this chapter are :

A new multifield comparison measure to capture interactioetsveen multiple scalar

fields defined on an-dimensional domain,

Theoretical results that establish the robustness of tresane by showing its insensi-

tivity to noise in the scalar fields,

An algorithm to compute the measure efficiently, and

Real world applications to demonstrate the effectivenesseofneasure in studying in-

teractions between scalar fields in physical phenomenaraagtansion to vector fields.

5.1.2 Related Work

A popular approach to visualizing multiple fields is to com#them into a single value and
then render the combined volume [39, 40]. Woodring et al] ptbpose that the data fields
should be rendered together within the same space for usgrareson. They use set operators

to combine the different fields into a single field that extsate interesting portions of the
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data. These set operators can either combine the colorsvafue input fields or directly
apply the operation in data space. Though combining volushess important parts of the
data, the interactions between the different variables dha of importance to the domain
scientists are not captured. For multifield time varyingagddee et al. [42] propose a linear
time algorithm to extract trend relationships among vdestbased on studying the change
of variables over time and how these changes are relatedgadifi@rent variables. Features
in multifield data have been extracted using techniquesddadter plots [36] and variation
density plots (see Chapter 4).

Multifield data have also been studied using statisticahiwdt. One important work in
this area uses the local statistical complexity [43] to tdgrieatures which may exhibit the
same behavior in the future. Features are identified as @xmfpthe probability that they
occur again is low. In a later workadicke et al. [44] improve the accuracy and efficiency of
computing the local statistical complexity.

The relationship between the different scalar fields is papucaptured with the help
of correlation measures. Sauber et al. [4] use two differechniques to compare different
scalar fields at a point. One of them uses the alignment ofigmtglof the fields and also
their magnitudes as a criterion to measure similarity. Winenumber of fields exceed two,
pairwise similarity is computed and the least value is adgr®d. This would detect regions
where two of the fields are highly correlated. An obviousfation of this approach is that two
fields with low correlation would result in the other fieldstibé data to be ignored. In the same
paper, the authors also describe a local correlation caeffito detect linear dependencies
between the scalar fields. The advantage of this method issénsitivity to scaling of the
data fields. It also has the same limitation as the first agbro&osink et al. [2] also use
correlation fields to study the interactions between thieht variables in multi-field data.
The inner product of the gradients of two fields of interestasnputed over principle level
sets of a third field. They use this approach to study comirusti methane and hydrogen. A

limitation with using the inner product of the gradientshattonly two fields can be compared.
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Edelsbrunner et al. [3] also employ a gradient-based approa measure relationships
between scalar fields. In their work, they introduce a meagucompare multiple scalar fields
both locally at a point as well as over a region of the domairthé case of three dimensional
Euclidean space and two fields, they show that the measurpaatreduces to the length of
cross product of the gradients of the fields. This measuoeigih useful, has a limitation that
the number of scalar fields that can be compared cannot exteeiimension of the domain.

In this chapter, we also explore a gradient-based appraacbmpare scalar fields locally
at a point. However, our method is not limited by the numbefiedéls that can be compared
unlike previous approaches. Our method also extends touangng scalar fields and to

vector fields. Further, the measure is provably robust teenim the input fields.

5.1.3 Outline

The rest of the chapter is organized as follows. In Secti@n\se define the multifield com-
parison measure and prove its robustness and other pexpekle motivate the use of the
measure and explain its working in Section 5.3. Computatidhe@ measure is described in
Section 5.4. We describe several applications of the meas@ection 5.5. In Section 5.6, we
discuss the limitations of the multifield comparison measand its insensitivity to noise in a

real world data. We conclude the chapter in Section 5.7.

5.2 Multifield Comparison Measure

In this section, we introduce a gradient-based compariseasore for multiple scalar func-
tions. The measure is defined as the norm of a matrix comprtkie gradient vectors of the
different functions. We first define the matrix norm befordimiag the measure and listing

and proving its properties.
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5.2.1 Matrix Norm

Let A be am x n matrix of real numbers. Theormof the matrixA, denoted agA||, is defined
as
IAll= = max_[|AX],
IX]|=1, xeR"

where||x|| represents the Euclidean norm of vect¢45]. We list four properties of the matrix
norm that we will use later to prove key properties of the carigpn measure. In particular,

if AandB are matrices of real numbers, then
1. ||A| > 0if A% 0and|A]| = 0iff A=0.
2. Fora e R, ||[aA|| = |al||A]|-
3. [|A+B[l < [|A]l+ /B[l and||A—B|| = [[|A]l - B

4. ||AB| < [[A]lB.

5.2.2 Comparison Measure

Let M be a compact Riemannian manifold of dimension Let (x1,X,...,%,) be a local
coordinate system such that the unit tangent vectors forortionormal basis with respect
to the Riemannian metric. L& = { f1, fp, f3,..., f;} be a set of smooth functions defined on

the manifold. The derivative at a poipte M is written as a matrix of partial derivatives,

21(p) 23 (p)
dF(p) =
S2(p) ... Hn(p)

We define themultifield comparison measurﬁ at pointp as the norm of the matrigF(p),
r)FF, = |[dF(p)||. The measure)g satisfies three important properties: symmetry, coordinat

system independence and stability. We now state and presge tiroperties.
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Figure 5.1: Piecewise-linear function defined on a triamgke 2D mesh.

Symmetry

The measure is independent of the permutation of the fumgiioF. The proof follows di-

rectly from the definition.

Coordinate system independence

Let (X],%5,...,x,) denote a second orthonormal local coordinate system.Jldeinote the
Jacobian matrix that transforms the second coordinatersysi the first. Sincd represents
a transformation between orthonormal coordinate systevss |v| for v € R". This implies

that ||J|| = 1. We first observe that i@iF’(p) is the derivative ap for the new coordinate

system, then,

dF'(p) = dF(p)J.

This implies that|dF'(p)|| = |[dF(p)J|| < ||dF(p)||||J]| by applying Property 4 of the matrix
norm. Since|J|| = 1, we haveg|dF'(p)|| < |[dF(p)||. Similarly, we can prove thatdF(p)|| <
||dF’(p)|| by considering the Jacobian that transforms the first coatdisystem to the second.

This implies that the matrix norms are equal independerft@tbordinate system.

Stability

We prove robustness of the measure when the scalar funatitims set~ are piecewise-linear

functions defined on a triangle mesh. We first observe thati¢nigative in the interior of a
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triangle is well defined and is a constant. To simplify thecdigsion, we prove stability for a
2D triangle mesh representing a surface. Extension to hijheensions is straightforward.
Consider a triangle in the mesh with coordinates as shownguargi5.1. The function

value at any interior poinp(X,y) is given by
fP = (AL ft+ Ao fP + Agf)x+ (BLfH + B2 2 + B3 fP)y,

where the constant®\1, A2, As, B1, B, B3z) depend only om, b, andc. Consider a perturbation
F = {f1,..., fm} of the functions in the s&%, wheref; = f; + & andg assumes small values.

The partial derivatives satisfy the following relationshi

afi  of

W — W = (A]_Eil + A2£i2 + A3£i3)
and

afi  af

a—yl — 0_yl = (Blfil + BZgiz + BSSis).

Therefore, the difference between the derivative matiges

dF(p) —dF(p)

Al + Aoe? + Aged  Biel +Boe? + Bged

(Arem+ Aok + Agey Biem+ Bogh + Baey,

Ef A1 Bp

= A2 Bz

gt g2 | Az B3

Using Property 3 of the matrix norm,

Inf —ngl < ||dF (p) — dF (p)]-
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Lete= sup |&(p)|. Using Property 4 of the matrix norm to rewriteF (p) — dF(p)|,
1<i<m,peM
we get

Inf —nf| < [[dF (p) —dF(p)|

1 2 3

IN

A B

gt g2 gl||As Bs

A1 Bp
< (V3m)e|lA, B,ll- (5.1)
Az Ba

When the data is available over a structured grid and lineatgrpolated along each co-
ordinate axis, the difference between neighboring poimesaich axis direction can be used to
approximate the partial derivatives at sample points amdéeompute)™. We show that the
multifield comparison measure is stable when we use suchoexdmation. For simplicity,
we assume that the domain is a 2-dimensional grid with edtbfaeze 1x 1 units. Therefore,
at grid pointp = (x,y),

x+1y Xy eXy+1 Xy
f1 _fl f1 _fl

np =

fr)r(1+l’y . fr)r(fy fr)1(17y+1 _ fr)r({y

It is easy to see that
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x+Ly Xy oxy+l Xy
& T—& &7 —&

Inf —npl <

£r>;1+1,y _ E,Z(ﬁy ErﬁW‘l _ Er);’y

< \/ i«ef“’y— &7+ (87 &)
< 2v2me (5.2)

Equations 5.1 and 5.2 indicate that a finite change in thetiume results in a bounded
change in the multifield comparison measure. In the caseeakpiise linear functions, the
amount of change additionally depends on the size of thediea

The rows in the matrixdF(p) represent the gradient vectors of the function. It is there-
fore easy to see (using property 3 from section 5.2.1) thatumdbed change in the gradients
will also result in a bounded change in the comparison meastline multifield comparison
measure is therefore robust with respect to perturbatiotisei scalar functions as well as their

gradients. For smooth functions, the latter property sals.

5.3 Analyzing Synthetic Functions

We describe the motivation for the definition of the multdiebmparison measure by consid-
ering the case of one and two analytic functions. Next, wevdlmwv the comparison measure
naturally extends to a larger number of scalar functions. al¥e show that the comparison
measure can be used to capture the variation in gradiendrgeater time for time varying

scalar fields and to capture variation in time-varying vettids.
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Figure 5.2: Multifield comparison measup& computed for synthetic functions defined on a
2D grid with the center as origin. (a) Two functiohgx,y) = 1/ (x— 0.25)2 +y2 andf,(x,y) =
v/ (x+0.25)2 +y2. The measurg" attains high values on the Jacobi set and low values where
the gradients are orthogonal. (b) The sinusoidal functidr y) = sin(3(x+Y)) and the linear
function fo(x,y) =y. (c) Three functionsf;1(x,y) = /X2 +V?2, fa(x,y) = %(\/§x+y), and
fa(x,y) = %(—\/§x+y). (d) One hundred different scalar functions, whose gradrentors

have unit magnitude and directions are chosen uniformlgradom at points on the two axes
and are chosen to be some constant at remaining points ofatie p

120°

60°f§ 60° 120 a20°

\12‘2 30° - 30°
30°

Figure 5.3: Two pairs of equivalent configurations of gratseof three functions described in
Figure 5.2c. Gradient vectors subtend an angle of B2points along th¥-axis (top) and are
more closely aligned with each other at points alongXkexis.
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5.3.1 One/two scalar functions

In the special case of a single scalar function, the companiseasure at a poin is equal
to the maximum rate of change of the function, which is esaliythe length of the gradient
vector atp. The gradient vector and its length have been used to stuaypehavior of a
function with respect to the domain [30]. The proposed mesgh is a natural extension of
the notion of gradients and their relationship to multipladtions.

In the case of two smooth scalar functions, the gradientsgalaith their mutual align-
ment is an indicator of the relationship between them [2].3,@iven two non-zero gradi-
ents, the multifield comparison measuré assumes the highest value when the gradients
are parallel or anti-parallel. This set of points where thadgents align is called the Jacobi
set [5]. The Jacobi set has been previously used to studgkgonship between scalar func-
tions [3]. The comparison measure assumes a minimum whegréogents are orthogonal.

Orthogonality of the gradients indicates mutual indepecdeof the functions. Figure 5.2a

shows the computed comparison measure for two parabolbifisy) = /(x— 0.25)2 +y?

and fo(x,y) = /(x+0.25)2 +y2 defined on a 2D grid. The Jacobi set is the §ne 0 shown

in dark red. The dark blue circle joining the centers of theapaloids is the set of points
where the gradients are orthogonal. Figure 5.2b depictthanexample, a sinusoidal function
f1(x,y) = sin(3(x+y)) and a linear functiorf(x,y) = y. The comparison measure assumes
high values at the Jacobi set (shown in bright red) and thefgeiints with orthogonal align-
ment of gradients has low values (shown in blue). We notethan the gradient of a function
is replaced with its negative, the measure remains the same different configurations of
the gradients yield the same comparison measure if it iSfjles® make a transition from one

to another by replacing gradients with their negatives.

5.3.2 Multiple / time-varying scalar functions

Consider three functionfg (x,y) = /X2 + V2, fa(x,y) = %(\/f_ix—i—y), andfa(x,y) = %(—\/§x+

y). The multifield comparison measure (see Figure 5.2c) isrmini along theY-axis. The
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gradient vectors at points on tieaxis subtend an angle of 12@ith each other, whereas they
are more aligned at points on tieaxis, see Figure 5.3. Figure 5.2d shows the comparison
measure computed for hundred different scalar functiofiaelon a grid. All gradients have
unit magnitude and the direction of the gradients for poarigheX andY axis are chosen
uniformly at random. The gradients of all scalar functions ehosen to be equal at other
points on the plane. We observe that the values of the cosgrameasure on the two axes are
low compared to the values elsewhere on the grid. This itekcthat given a set of gradient
vectors with fixed magnitudes, the measure takes high valhese the directions are more
“coherent”.

Given a single time varying scalar field, we construct thd=set multiple scalar functions
with one function corresponding to each time step. The freltficomparison measure in this
case measures the variation of the scalar function over tileeextend the measure to compare
multiple vector fields or analyze the variation in time-vagyvector fields by replacing each

row in the derivative matrixiF (p) with the input vector at the poirg.

5.4 Computation

Evaluating the multifield comparison measure at a pointirequhe solution to a maximiza-
tion problem. In this section, we describe how this compomatan be reduced to the faster

evaluation of the maximum eigenvalue of a positive seminttefimatrix.

5.4.1 Maximum eigenvalue computation

From the definitions of the multifield comparison measuretaechorm of a matrix, we have

nf,:( max xT<dF<p>>T<dF<p>>x)2.

XeRN x| =1
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We rewrite the matrix produ¢dF(p))" (dF(p)) asUTAU, whereU is an orthogonal matrix
andA\ is a diagonal matrix consisting of the eigenvaluegd(p))T (dF(p)) as entries in its

diagonal. This follows from the spectral theorem from linalgebra [46]:

XeRN, x| =1

1
2
nE:( max xTUT/\Ux> .

Since the orthogonal matrik represents a length preserving and invertible transfoomate
can write the above expression as
%
np = ( max xT/\x>
X€RM [|x]|=1

= max{VA : A is a diagonal element df}

=max{V/A : A is an eigenvalue ofdF(p))" (dF(p))}.

For piecewise linear functions defined on a triangle meshd#rivative matrixdF(p) is con-

stant within a triangle and can be computed by choosing & tmmadinate system.

5.4.2 Analysis

The size of ther x n matrix (dF(p))T (dF(p)) depends only on the dimension of the domain.
Therefore, the time taken for computing the eigen valuedi®fproduct matrix also depends
only on the dimension of the domain and is, in particularemendent of the number of fields

m.

5.5 Applications

We use the multifield comparison measure to study variousvedd data from weather mod-
eling, climate simulations, and combustion simulationbs€vations on the combustion data

were compared with prior work described in the literatunestFwe study a simulation of the
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(b)

Figure 5.4. (a) The hurricane track released by the US Naltibiurricane Center (source:

http://www.nhc.noaa.gov). The track relevant to the peobsimulation is between point 17

and point 19 when the hurricane struck the coast. (b) Mulliftemparison measure com-
puted for nine pressure fields. The region in red with higluealof the comparison measure
corresponds to the trace of the eye of the hurricane. Larfibisisin green.

hurricane Isabel. Next, we apply our multifield compariso@asure on a global wind pat-
tern data set. Finally, we study a combustion simulatioa dat by aggregating the multifield
comparison measure over the domain at each time step. Taendae following applications

varies in the dimensionality of the domain and the numberetdii— two scalar fields defined
on a 3D domain, multiple time-varying scalar fields define@brand 3D domains, and time-
varying vector fields. In all cases the analysis is based eptbposed multifield comparison
measure)™. We perform experiments on data sets obtained using ayafietimate models.

In Section 5.5.2, we describe results from four differemhate models, which demonstrate

the applicability of the proposed method.

5.5.1 Isabel Hurricane

Hurricane Isabel struck the west Atlantic region in Septen#903. A simulation of the phe-
nomenon was performed on a 68@00x 100 grid corresponding to a physical volume of

2139kmx2004kmx19.8 km over 48 time steps corresponding to 48 simulated ho®is[3

IHurricane Isabel data was produced by the Weather Resezddfoaecast (WRF) model, courtesy of NCAR
and the U.S. National Science Foundation (NSF).
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Figure 5.5: Fronts in Hurricane Isabel at hour 10. (a) Regibsimulation. Land mass is
shown in red. (b) Volume rendering (top view) of horizontahd/speed Uf. (c) Volume ren-
dering (top view) of horizontal wind speed Vf. (d) Volume deming (top view) of multifield
comparison measum@™ computed for Uf and Vf showing the rainbands at differennfso
The location of the fronts is not available from the indivadigcalar fields Uf and Vf.
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Figure 5.6: Fronts in Hurricane Isabel at hour 40. (a) Volueralering (top view) of horizontal
wind speed Uf. (b) Volume rendering (top view) of horizontahd speed Vf. (c) Volume

rendering (top view) of multifield comparison measafe computed for Uf and Vf showing
the rainbands at different fronts. The cold front leads themvfront resulting in an occlusion.

(d) Volume rendering from a different viewpoint .
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Several quantities were computed by the simulation. Thias@alds relevant to our experi-

ment are pressure (Pf) and the horizontal wind velocity comepts (Uf and V).

Hurricane track

The horizontal pressure gradient can be observed to be ldghthe eye of the hurricane
throughout the simulation. We study the pressure field atyefitth time step defined on
a 2D slice corresponding to altitude 1500m. Figure 5.4b shthe multifield comparison
measure computed for the nine pressure fields. The red aircedions that correspond to
high values of the comparison measure correspond to thechnertrack. Figure 5.4a shows
the track provided by the US National Hurricane Center foemngice. The results are similar
when we compute the multifield comparison measure for all @8gure fields. One of the
horizontal pressure gradients assumes a high value at éheosypared to the rest and hence

the comparison measure is higher compared to regions fartfie path of the eye.

Rainbands and front

Cloud structures associated with an area of rainfall, calitbands, occur mainly at bound-
aries separating two masses of air of different densitieistamperatures, called fronts. The
leading edge of the cooler mass of air is called the cold famk the leading edge of a warm
air mass is called the warm front. The turbulence of the lootial wind velocity is high near
rain bands. We study the fronts by computing the multifielchparison measure for the pair
of 3D scalar fields Uf and V1, where the 3D domain correspondbé volume in the altitude
range 1500m-5800m.

First, we compute the multifield comparison measure for i Uf and Vf in the 18
time step. Figure 5.5 shows the result of our experiment Asn@rendered images with the
view point located above the volume. In particular, Figurgdsshows the location of two
warm fronts and a cold front. This information about fron&écot be extracted from the

two functions individually (see Figures 5.5b and 5.5c). Thmparison measure successfully
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captures the relationship between the fields at the frofits larm front leads the cold frontin
the 10" time step. The precipitation structures indicated by ligltspots on the rain bands on
the land mass were responsible for heavy rainfall in Floriext, we compute the multifield

comparison measure for the fields Uf and Vf in th&4tbur of simulation. We observe that
the warm front at the north has disappeared, see Figureahd8.6d . The previously leading

warm front is overtaken by the cold front resulting in an ostbn.

Value of Study

Both structures discussed above are key to a comprehensosedtthe hurricane. The track
of a hurricane or a cyclone generated from a forecast is hlelpfpredicting the areas sus-
ceptible to severe weather. Fronts often give valuablermétion about severe weather to
the forecaster. Rainbands at cold fronts are often strongtuwre and can be responsible for
heavy thunder storms. Typically, occlusion fronts are eisged with thunder storms and their

passage results in the reduction of humidity.

5.5.2 Global Wind Patterns

Prevailing winds are winds that blow in a dominant directidm@ particular point. Movements
in the Earth’s atmosphere affect these winds. In regions idflatitudes, the winds blow
from west to the east and are known as westerlies. The windgslfo the tropics near the
equator are easterlies or trade winds. Figure 5.7a showdiffieeent prevailing winds on
earth. We study wind patterns on earth using a climate stoul@f 50 years between 1960
and 2009 [47. The data is available for 600 time steps corresponding ¢b ezonth over

the period of simulation. Each time step is a 3D grid with heson corresponding to “1x

2The climate data was part of the WCRP CMIP3 Multi-Model dafsository at https://esgcet.linl.gov:8443.
We acknowledge the modeling groups for making their modébuwuavailable for analysis, the Program for
Climate Model Diagnosis and Intercomparison (PCMDI) foltexting and archiving this data, and the WCRP’s
Working Group on Coupled Modelling (WGCM) for organizing thedel data analysis activity. The WCRP
CMIP3 multi-model dataset is supported by the Office of Smiet.S. Department of Energy.
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Figure 5.7: Multifield comparison measuné computed for wind velocities over the years
1960-2009, where the comparison is over a set of six hundbedegtor fields. (a) Map of
world showing wind patterns (source: Wikipedia) (b) Distrion of n™ over surface corre-
sponding to pressure elevation 925 hPa. The dark red regmrsspond to the wind patterns.
(c) Distribution ofn™ over surface corresponding to pressure elevation 300 hRatemper-
ate regions exhibit higher values. (d) Storm track for therge 985-2005 (source: Wikipedia)
(e) Distribution ofn™ after removing regions with low mean temperatute7°C). Red re-
gions correspond to the storm tracks. The world map is owkida clarity.
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1° x 16plev(pressure elevations) on earth. Pressure elevationspoimd to pressures varying

from 1000 hPa on the surface to 30 hPa in the upper atmosphere.

Westerlies and trade wind

The wind velocity at a point on the grid is a vector quantitye Mge the monthly wind velocities
as rows in the derivative matrix and compute the matrix nan600 vector fields. The norm

n" measures the variation of the wind velocities over a timéopleof 50 years. Figure 5.7b

shows the distribution of the computed comparison meastge asurface corresponding to
pressure elevation 925 hPa. Comparing with wind patternggaré 5.7a, we see that the
measure assumes high values in regions that lie in the pgtheweéiling winds, particularly

the westerlies found in the regions surrounding Antarctimaregion of hurricanes in Atlantic,

the cyclone prone region between Madagascar and Austealéhthe trade winds across the
Atlantic sea traveling towards the Caribbean sea. The loigtan of the comparison measure
over the isobar for pressure level 300 hPa, which corresptmapproximately 30000 feet
above sea level, is shown in Figure 5.7c. The values of thepadson measure are higher
compared to Figure 5.7b because friction and other effestcause the wind flow at 925 hPa
to be less steady than at higher levels such as 300 hPa. Wéhabtee comparison measure
assumes high values over the temperate regions corresptadihe westerly jet. This is a

semi-permanent feature of the mid-latitudes. Many regioribe tropics undergo a seasonal
reversal of wind (called the monsoons). Lower values of th@marison measure over the
tropics indicates unsteadiness and corresponds to a seaseersal in wind pattern over this

part of the world.

Storm track

The regions over the ocean with warm temperature2{°C) are susceptible to storms. We
filter out regions with lower temperatures and restrict aualgsis to the months from June

to November with the aim of locating storm tracks. Regionsashm blue in Figure 5.7e
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have been filtered out. The red regions match closely wittstben tracks shown in Figure
5.7d. We notice that even though the west coast of South Améras trade winds, storms
are particularly absent due to lower temperatures. Thenspoevalent regions in the Indian,
Atlantic, and Pacific oceans have high values of the compariseasure. To ensure the validity
of our results, we compute wind patterns for other modelsmeccgema3 [48, 49] and bccr-
bcm?2.0 [50]. (see Figure 5.9)

We next study the changes in storm tracks over two centufigseach century, the storm
track is computed over a period of 25 years (see Figure 5.Bg distribution of the differ-
ence between both images indicate that there could bechamgorm patterns with possibly
stronger winds over the Indian Ocean, near PhillipinesCietral Pacific and off the coast of
Indonesia/Australia. The conditions could be less storfiyhe American coasts (both east
and west), northern and southern Pacific and off the Chineast.cdhis however does not
preclude individual storms being of higher strength as satggl by Webster et al. [51]. Also,
these results could be dependent upon the ECHAM5 coupleahetesosphere model used.

We note that the signals are stronger in the figure on the.right

Value of Study

Wind patterns give the details of the wind over a particulace. They cause various local
and global phenomena and are widely studied by climate t&ien For example, the trade
winds are responsible for tropical cyclones over oceanstnStracks generated using winds
give us information on regions where storms are more preba@bmputing storm tracks for
long periods would require ascertaining tracks of everyiddal hurricane and cyclone and
plotting them. Our approach simplifies this computation bypsidering all 600 time steps

together to generate the distribution of the comparisorsomea
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Figure 5.8: Changes in storm tracks studied by computingifferehce in multifield compar-
ison measure computed for two periods of 25 yearsn {afor the years 1985-2010 subtracted
from nF for the years 1885-1909. ()™ for the years 2075-2099 subtracted frgh for the
years 1885-1909.

5.5.3 Hydrogen Combustion

We study phases in the combustion of an inhomogeneous antoodixture of fuel and oxi-
dizer. Hydrogen fuel at 300K is mixed with an oxidizer (21%yg&n) at 1200K. The influ-
ence of turbulence on the different phases of combustiotu@iesd in the simulatiof. The
compressed fuel ignites at multiple spots because of themolgeneity in the air-fuel ratio.
Depending on the air-fuel ratio, the flame either propagates outward direction from the
ignition spot or burns out. Further details of the compotatan be found in the description
of the simulation by Echekki and Chen [19] and in the desaiptf a visual analysis of this
data by Koegler [32]. The domain of the simulation is a G0&00 grid for 67 time steps. The
species mass fractions of the fuel,ldxygen Q, and intermediate H&are given at each grid
point for all time steps. The reactions between these differadicals determine the phases of

combustion. We study these phases with the multifield cormpameasure.

Phases of combustion

We aggregate the multifield comparison measure for a tinetddy computing its integral

Ft_ /n)l(:dX

xeD

over the domair of simulation:

3We would like to thank Valerio Pascucci and Jackie Chen fowigiing the combustion data
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(c) (d)

Figure 5.9: Study of wind patterns and storm tracks using ttatm different climate models.
Global wind pattern captured by the multifield comparisoraswge: (a) model bcer-bcm?2.0
and (b) model cccma-cgem3. Storm track for the years 190®-Biyhlighted by the multifield
comparison measure: (¢) model bcer-becm2.0 and (d) modetaecgema3.

In our study, we consider all three scalar fields for computhee comparison measure for a
time step, i.e.F = {H»,02,HO,}. The plot ofn™! over time is shown in Figure 5.10. We
compare our results with a plot of the global comparison mess, introduced by Edelsbrun-
ner et al. [3], see Figure 5.10. The fields used for compwiage H and G. The maximum
number of fields thak can compare over a 2D domain is two, whereas we are able taleons
all three fields in our analysis.

Following the work of Koegler, the areas in the domain thardwually ignite can be con-
sidered as features. In the pre-ignition phase, the coratenis of the intermediate radicals
build up in regions that have sufficient mass fraction ef Hhe number of features attains
a maximum during time steps 7-14 [32]. This is captured by eekin the plot o™, The
plot of k does not indicate changes that happen in the pre-ignitidd bp of radicals because
the intermediate H®is not considered in the computation. Ignition (time steptZpens at
areas with high radical concentrations during the ignipbase and the flame front spreads to

hot enough areas with the right mix of fuel and oxidizer dgrihe burning phase (time steps
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Figure 5.10: Analyzing phases of combustion using an aggeeg ' of the multifield com-
parison measure over the domain within a time $tephe set- = {H»,0,,HO»}. The plot

of %! (blue) over time captures more phases of the combustiorepsazompared to the plot
of the global comparison measwéH>, O,) (red) proposed by Edelsbrunner et al. [3]. The
vertical dashed lines approximately correspond to thepbases of combustion: pre-ignition,
ignition, burning, and extinction.

50-55). Ignition and burning are captured by a minimum andaaimum respectively in the
plot of n™t. These phases are also capturedtyecause of the interaction betweep &hd

O, during this time period. The beginning of the extinction phdapproximately time step
60) where the flame begins to extinguish is also captured wiesly by a minimum in the
plot of n™!. We believe that the reasayi! is able to capture more information compared to

K is because all three fields play a role in defining the phases.

5.6 Discussion

We now discuss some limitations of the multifield comparisogasure and describe an ex-
periment to study the sensitivity of the measure to noiseheibput. We also discuss its

relationship with principal component analysis (PCA).
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Figure 5.11: Stability in the comparison measure for Isaf@@Volume rendering (top view) of
multifield comparison measurg computed after adding Gaussian noise (standard deviation
= 1) to the fields Uf and Vf. The rain bands are still clearlyidis. (b) Graph showing near
linear relationship between the standard deviation of thisenin the inputgi,, and the mean
deviation of the comparison measurgr .

5.6.1 Limitations

The basic premise behind using the comparison measure tiareaplationships in multifield
real world data is the fact that the agreement among theéiftgradient fields can often cap-
ture interactions among fields. In many applications, wiigsedoes not hold good, using the
comparison measure or other gradient based comparisorurasagould be less fruitful. We
therefore believe that gradient based techniques suchraxomplements other well known
techniques like the local statistical complexity [43] am@ tPearson correlation coefficient.

Another drawback of the comparison measure is its sengitwiscaling of individual fields.

5.6.2 Sensitivity to noise

We validate our claim that the comparison measure is inge®$0 noise using the hurricane
data described in Section 5.5.1. The different featuresgmtein the data like the weather
fronts are still clearly visible in the computed comparisoeasure field after adding a Gaus-

sian noise (standard deviation = 1) to the input fields Uf afa@fMhe 10" time step in the
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simulation, see Figure 5.11a. It should be noted that theenee have added is large and quite
unlikely to occur in real data sets. We also study the mearatiem in the comparison mea-
sure computed on input with Gaussian noise of different gogss. Figure 5.11b shows the
linear relationships between the observed mean deviatigh @nd the noise, which indicates

that the multifield comparison measure is not much sensiivmise.

5.6.3 Multifield comparison measure and PCA

In Section 5.4, we showed that the multifield comparison measan be computed by finding
the maximum eigenvalue of the matrid"dF. if the components of the gradients have a
zero mean, the direction of the eigenvector correspondirtheg maximum eigenvalue is the
direction in which the variance of the inner products of tmadients with the eigenvector
is maximum. The multifield comparison measure is therefbeeviariance of the principal
component when performing principal component analysigiermatrixdF [52]. The matrix

dFTdF can be considered the covariance matrix.

5.7 Conclusions

We have described a robust multifield comparison measusctdar fields whose distribution
over the domain plays an important role in the visual analgéihe input fields. The compar-
ison measure is computed locally at all points of the domaitha maximum eigenvalue of
a small sized matrix. We described applications of the coispa measure to study various
simulation datasets from climate science and combustiahest where the data is represented
using multiple 2D, 3D, or time-varying scalar fields. We u#egicomparison measure to study

up to 600 scalar fields defined on the domain. We list threesit@duture work:

e The multifield comparison measure being sensitive to théngcaf individual fields
may not be always desirable. One approach to address thes is$o scale the scalar

fields or normalize their gradients. Though this method waubrk in some cases, it
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could bias the results by scaling up small insignificant grnais. A complete solution

remains to be a challenge.

¢ Integrating the multifield comparison measure into the goarsed visualization frame-

work of Gosink et al. [2] will be an interesting task.

¢ |dentification of important isovalues of a scalar functiomultifield data is a challeng-
ing problem (see Section 4.1 in Chapter 4). A global versich@proposed comparison

measure may help locate these isovalues.
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Conclusions

In this thesis, we have argued that to effectively undedcstard visualize multifield scientific

data, it is necessary to consider the interactions that brisveen the different fields. We
have restricted our focus to scalar fields defined on marsfdldhenever the field is given as
samples over a simplicial complex, we have used piecewisalliinterpolation to reconstruct
the original field.

We have described three new techniques to understand aradizesinter-variable relation-
ships in multifield scientific data. For each technique, weeh#described real world applica-
tions where the technique could be used. Also, we have disdusiture work and limitations
at the end of the corresponding chapter. We summarize thsstt@ntributions in the following

list :

¢ We have introduced a new technique to compute and simpkfyadcobi set of two morse
functions. Our approach allows the representation of thehlaset at multiple levels of

simplification.
e We have developed software to compute, simplify and viewstimplified Jacobi set.
e We have introduced a new variation density function to idgmteresting isosurfaces

in multifield data.

83
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¢ We developed an efficient parallel implementation to idgmtiteresting isovalues using

the variation density function.

e We have introduced a new multifield comparison measure thatiices relationships
between an arbitrary number of scalar fields. We also havdfiarert implementation

to compute the multifield comparison measure.

Throughout the thesis, we have assumed that the gradiemg @lith their mutual align-
ment play a significant role in defining relationships betmvéelds. Extending the proposed
techniques to data where this assumption is false is a dggttig problem. We believe that our

techniques complement existing techniques for multifiesdi@lization.
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Homeomorphism, 9 Rectilinear grid, 11

Reeb graph, 15
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Isosurface, 12
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Manifold, 9 _
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Matrix norm, 60
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