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Abstract—The Reeb graph of a scalar function tracks the evolution of the topology of its level sets. This paper describes a fast
algorithm to compute the Reeb graph of a piecewise linear function defined over manifolds and non-manifolds. The key idea in
the proposed approach is to maximally leverage the efficient contour tree algorithm to compute the Reeb graph. The algorithm
proceeds by dividing the input into a set of subvolumes that have loop-free Reeb graphs using the join tree of the scalar function
and computes the Reeb graph by combining the contour trees of all the subvolumes. Since the key ingredient of this method is
a series of union-find operations, the algorithm is fast in practice. Experimental results demonstrate that it outperforms current
generic algorithms by a factor of up to two orders of magnitude, and has a performance on par with algorithms that are catered
to restricted classes of input. The algorithm also extends to handle large data that do not fit in memory.

Index Terms—Computational topology, scalar functions, Reeb graphs, level set topology, out-of-core algorithm.

1 INTRODUCTION

The Reeb graph of a scalar function is obtained by mapping
each connected component of its level sets to a point. Level
set components that contain critical points of the function
map to nodes of the graph. The abstract representation
of the level set topology in the Reeb graph facilitates
the development of methods for modeling objects and
visualizing scientific data. Reeb graphs and their loop-free
version, called contour trees, have a variety of applications
including computer aided geometric design [1], [2], [3],
[4], topology-based shape matching [5], topological sim-
plification and cleaning [6], [7], [8], [9], surface segmen-
tation and parametrization [10], [11], [12], and efficient
computation of level sets [13]. The Reeb graph serves as
an effective user interface for selecting meaningful level
sets [14], [15], for designing transfer functions for volume
rendering [16], [17], [18], [19] and for exploring high
dimensional data [20], [21].

Rapidly increasing data sizes and the interactivity re-
quirement in the above-mentioned applications necessitate
the development of algorithms for fast computation of Reeb
graphs that are capable of handling relatively large input
sizes. Further, in several cases the domain is not simply
connected, is non-manifold, and may be high-dimensional.
While an efficient and fast algorithm is available for com-
puting contour trees in all dimensions, such an algorithm
for computing Reeb graphs is still elusive. In this paper we
attempt to solve this problem by aggressively employing
the contour tree algorithm to construct the Reeb graph.
This approach results in an algorithm that is efficient both
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theoretically, in terms of the worst case running time, and
practically, in terms of performance on real-world data. The
algorithm is also amenable to handle large data that do not
fit in memory.

1.1 Related Work

Several algorithms have been proposed for computing the
Reeb graph of a scalar function. We refer the reader to
the following surveys [22], [23], [24], [25] for a detailed
discussion of these approaches. In this section we restrict
the discussion to those algorithms that produce provably
correct Reeb graphs. We categorize the algorithms based on
how they partition the input domain to analyze the topology
of the level sets. Table 1 summarizes the properties and
worst case running time of the best known Reeb graph
computation algorithms.

The Reeb graph of a scalar function defined on a simply
connected domain is called a contour tree. Carr et al. [26]
describe an elegant O(vlogv+ na(n)) algorithm for com-
puting contour trees that works in all dimensions. Here, v
is the number of vertices and » is the number of triangles
in the input. This algorithm uses a series of union-find [34]
operations to track the connectivity of the super-level sets
and sub-level sets, and constructs a join tree and split tree,
respectively. These two trees are merged to generate the
contour tree. Chiang et al. [35] propose an output sensitive
approach that first finds all component critical points using
local neighborhoods and connects these critical points using
monotone paths to obtain the join and split trees. This
algorithm has a running time of O(rlogs +n), where ¢ is
the number of critical points of the input.

Early algorithms for computing Reeb graphs followed
the direct approach of tracking its level sets with increas-
ing / decreasing function values during a sweep of the
input. Shinagawa and Kunii proposed the first algorithm
for constructing the Reeb graph of a scalar function de-
fined on a triangulated 2-manifold [36] in O(n?) time.



TABLE 1
Comparison of various algorithms for computing Reeb graphs based on the type of input they can handle, worst
case running time, and approach. v is the number of vertices in the input, » is the number of triangles, ¢ is the
number of critical points, s is the number of saddles, [ is the total size of all critical level sets, g is the maximum
genus over all level sets, and & is the number of loops in the Reeb graph.

2004 [27]

Algorithm Input Type Time Complexity Approach Notes
Carr et al. simply connected O(vlogv+na(n)) track components of sub- | Computes contour trees. It
2003 [26] : . . .
d-dimensional level sets and super-level sets | requires data in memory.
simplicial complex using a series of union-find
operations
Cole-Mclaughlin et al. 2-manifolds O(nlogn) sweep and explicitly main- | Algorithm does not extend to

tain level sets three and higher dimensions.

It requires data in memory.

Doraiswamy et al. 3-manifolds

2009 [28] d-manifolds

O(nlogn +nlogg(loglogg)?)

O(nlogn(loglogn)?®)

Has best known theoretical
bound on running time. It
requires data in memory.

sweep and explicitly main-
tain level sets

Pascuccti et al.

2009 [33] embedded in R3

arbitrary  simplicial 0(n2) explicitly maintain level sets | Has the best performance for
2007 [29] .
complex 2D data and is capable of
handling large data sizes.
Harvey et al. arbitrary  simplicial O(nlogn) expected time collapse triangles Requires data in memory.
2010 [30]
complex
12)88‘911 T;lt] al. 2-manifold O(ns) split and compute Time complexity degenerates
to O(n?) in the worst case. Tt
requires data in memory.
Doraiswamy et al. arbitrary  simplicial O(n+1+tlogt) split and compute Time complexity degenerates
2011 [32] 2y ;
complex to O(n*) in the worst case. It
requires data in memory.
Tierny et al. 3-manifolds O(nlogn+ hn) split and compute 1. Has the best performance

for such input.
2. Time complexity degener-
ates to O(n?).
3. Requires data in memory.

This algorithm explicitly tracks connected components of
the level sets. Cole-Mclaughlin et al. [27] store the level
sets using balanced search trees and improved the run-
ning time to O(nlogn). Doraiswamy and Natarajan [28]
follow a similar approach to store the connected com-
ponents of level sets using dynamic connectivity data
structures resulting in an algorithm that computes the Reeb
graph of a three-dimensional scalar function in O(nlogn+
nlogg(loglogg)?) time. Here, g is the maximum genus
over all level sets of the input function. They extend this
approach to higher dimensional manifolds and design a
O(nlogn(loglogn)?) time algorithm. While this algorithm
has the best known theoretical bound on the running time,
the sophisticated data structures used in the algorithm do
not lend themselves to efficient implementations in practice.

Pascucci et al. [29] propose an online algorithm that
constructs the Reeb graph for streaming data. Their algo-
rithm takes advantage of the input coherence to construct
the Reeb graph efficiently. In a streaming model, where
triangles are processed during a single pass through trian-
gles in the input mesh, the algorithm essentially attaches
the straight line Reeb graph corresponding to the current
triangle with the Reeb graph computed so far. Even though
the algorithm has a O(n?) behavior in the worst case, it
performs very well for two-dimensional scalar functions.
However, the optimizations that result in fast incremental
construction of Reeb graphs for 2D data do not provide a

performance benefit in higher dimensions.

Harvey and Wang [30] propose a randomized algorithm
that computes the Reeb graph of an arbitrary simplicial
complex. They repeatedly collapse all triangles constitut-
ing the level set component of randomly chosen vertices
resulting in a reduced input whose Reeb graph is equal to
that of the original scalar function. This algorithm has an
expected running time of O(nlogn).

Other recent algorithms follow an approach that ex-
plicitly split the input, compute the Reeb graph for each
subdomain, and stitch the graphs together to obtain the
Reeb graph of the input. Patane et al. [31] focus on 2-
manifolds and propose a contouring approach to compute
the Reeb graph in O(ns) time, where s is the number of
saddles in the input. Tierny et al. [33] perform a surgery
on a 3-manifold domain that cuts open all handles on the
domain’s boundary, thereby reducing the problem to the
computation of contour trees. This approach leads to a
very efficient algorithm that computes the Reeb graph in
O(nlogn+ hn) time, where £ is number of loops in the Reeb
graph. This algorithm however works only on 3-manifolds
that are embedded in R?. Doraiswamy and Natarajan [32]
propose a two-step output-sensitive algorithm to compute
the Reeb graph for both manifold and non-manifold input.
They use an alternate definition of the Reeb graph that maps
the nodes of the Reeb graph to level set components of
critical points, and its arcs to the interval volume between




these critical level sets. This results in a O(n+1+tlogr)
algorithm, where [ is the size of all critical level sets and ¢
is the number of critical points.

The methods used by the output sensitive [32] and
loop surgery [33] algorithms can be considered as two
extremes of the “split and compute” approach. The output
sensitive approach splits the domain at all saddles resulting
in loop-free subdomains whose contour trees consists of
a single arc. These arcs are subsequently stitched together
to form the Reeb graph of the input. On the other hand,
the loop surgery method splits the domain only at potential
loops resulting in a single loop-free domain. The contour
tree of this surgically modified domain is computed and
processed to close the loops. Even though the worst case
running times of these algorithms degenerate to O(n?),
they were shown to perform better than their sweep-based
counterparts in practice. This can be attributed to the fact
that both methods are able to achieve significant speed up
by reducing the problem to that of computing contour trees.
In both algorithms, explicitly storing the splits causes the
memory required to increase linearly with the number of
saddles or loops. This results in a large overhead in practice
when several triangles span a large function range and thus
are repeatedly stored at multiple splits. In this paper, we
adopt an approach that simulates an optimal number of
splits to maximally leverage the benefit of the contour tree
algorithm. This approach results in an algorithm to compute
the Reeb graph that outperforms existing algorithms and is
applicable to manifold and non-manifold domains in any
dimension.

1.2 Results

We present a fast and efficient algorithm that computes
the Reeb graph of a piecewise-linear (PL) function in
O(vlogv+sn) time, where v is the number of vertices, n is
the number of triangles and s is the number of saddles in the
input. The algorithm first identifies loops in the Reeb graph
using a combination of neighborhood based critical point
classification and level set topology based classification
of critical points. The algorithm then implicitly splits the
domain into a set of subvolumes whose Reeb graphs are
loop-free, and constructs the Reeb graph of the input
by combining the Reeb graphs (contour trees) of these
subvolumes. The algorithm has the following properties:

« Efficient in practice. Experimental results indicate that
the algorithm is up to two orders of magnitude faster
than existing algorithms.

« Easy to implement. Potential loops in the Reeb graph
are identified using the join tree of the input. The main
operation performed by the algorithm is a series of
simple union-find operations.

« Works without any modification on d-manifolds (d >
2) and non-manifolds.

» Additional memory required is O(n). The algorithm
does not explicitly store the splits performed. We
notice that in practice the algorithm uses only O(s)
additional memory. The number of saddles, s, is usu-
ally much smaller than n.

« Handles large data that do not fit in memory.

We perform extensive experiments to demonstrate the
efficiency of our algorithm. More specifically, we show
that our algorithm outperforms existing generic algorithms,
and is comparable with algorithms that are specialized for
restricted classes of the input.

2 BACKGROUND

In this section, we briefly introduce some of the neces-
sary definitions and refer the reader to appropriate text-
books [37], [38], [39] for more detailed definitions and
discussions of these concepts.

2.1 Simplicial complex and PL functions

A d-simplex o is the convex hull of d + 1 affinely indepen-
dent points. A simplex 7T is a face of o if it is the convex
hull of a subset of the d+ 1 points and is denoted as T < ©.
A simplex o is called the coface of 7 if 7 is a face of o©.
A simplicial complex K is a finite collection of non-empty
simplices that satisfies two properties:

1) o0 €K and 7 < o implies T € K

2) 01,0, € K implies that 61N o, is either empty or a

face of both o7 and 0,.
We assume that the input to our algorithm is a triangulated
mesh represented by a simplicial complex K together with
a piecewise-linear (PL) function f: K — R. The function is
defined on the vertices of K and linearly interpolated within
each simplex.

The star of a vertex u consists of the set of cofaces of u.
All simplices in the star in which the function values are
greater than at u constitute the upper star. All simplices in
the star in which the function values are lower than at u
constitute the lower star. The link of a vertex u is the set
of all faces of simplicies of its star that are disjoint from
u. It consists of all vertices adjacent to u and the induced
edges, triangles, and higher-order simplices. Adjacent ver-
tices with lower function value and their induced simplices
constitute the lower link, whereas the adjacent vertices with
higher function value and their induced simplices constitute
the upper link. Figure 1 shows the star and link for vertices
in two- and three-dimensional meshes.

2.2 Critical points and Morse functions

Let M denote a d-manifold with or without boundary. Given
a smooth, real-valued function f: M — R defined on
M, the critical points of f are exactly where the gradient
becomes zero. The function f is called a Morse function if
it satisfies the following conditions [27]:
1) All critical points of f are non-degenerate and lie in
the interior of M.
2) All critical points of the restriction of f to the bound-
ary of M are non-degenerate.
3) All critical values are distinct i.e., f(p) # f(q) for all
critical points p # gq.
Critical points of a Morse function can be classified based
on the behavior of the function within a local neighborhood.
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Fig. 1. Local neighborhood of a vertex in a 2D and
3D mesh. The star of the vertex represents its local
neighborhood and consists of all simplicies incident on
it. The link of a vertex in 2D is a triangulation of a circle,
and in 3D, it is a triangulation of a sphere.

Banchoff [40] and later Edelsbrunner et al. [41] extend
these ideas to PL functions and describe a combinatorial
characterization for its critical points, which are always
located at vertices of the mesh. We describe this charac-
terization in the following section after introducing level
sets and their connectivity.

2.3 Level set topology

The preimage f~!(a) of a real value a of a PL function
f is called a level set. The level set of a regular value
is a (d — 1)-manifold with or without boundary, possibly
containing multiple connected components. A sub-level set
of a real value a is the preimage of the interval (—eo,a],
while the super-level set of a is the preimage of the
interval [a,+e0). We are interested in the evolution of level
sets against increasing function value. Topological changes
occur at critical points, whereas topology of the level set is
preserved across regular points [42].

Critical points are characterized by the number of con-
nected components of the lower and upper links, as shown
in Figure 2. The vertex is regular if it has exactly one lower
link component and one upper link component. All other
vertices are critical. A critical point is a maximum if the
upper link is empty and a minimum if the lower link is
empty. Else, it is classified as a saddle.

2.4 Reeb graphs

The Reeb graph of f is obtained by contracting each
connected component of a level set to a point [43]. For-
mally, it is the quotient space under an equivalence relation
that identifies all points within a connected component of
a level set. The Reeb graph expresses the evolution of
connected components of level sets as a graph whose nodes
correspond to critical points of the function. Figure 3 shows
the Reeb graph for the height function defined on a solid
vase.

Consider a sweep of the input in decreasing order of
function value. A vertex is a join saddle if two level set
components merge at that vertex during the sweep. It is a

2D 3D  Reeb graph
Regular \;/ i |
Minimum @ ° ¢
Maximum O © i ¢

Split Saddle \

Join Saddle

Fig. 2. Classifying a vertex as regular, minimum, max-
imum or saddle using the topology of its local neigh-
borhood. The lower link of a vertex is colored blue; its
upper link is colored red. The structure of the Reeb
graph is shown in the right column. The connectivity of
the level sets further classifies the saddle as a split or
join saddle.

split saddle if a single level set component splits into two
components at that vertex. Figure 2 illustrates the local
structure of the Reeb graph at various types of nodes.
Nodes corresponding to minima and maxima have degree
one, while a node that corresponds to a simple join or
split saddle has degree three. Other simple saddles have
degree two, and do not modify the number of connected
components of the level set. In the context of Reeb graphs,
we are interested only in critical points that modify the
number of level set components.

The conditions for a Morse function typically do not hold
in practice for PL functions. Degeneracy in PL functions re-
sults in the presence of saddles that have degree greater than
three in the Reeb graph. In order to simplify the description,
we assume that all saddles are degree-2 or degree-3 nodes
in the following sections. The extension of the algorithm
to handle higher degree saddles is straightforward and is
described in Section 3.4. Simulated perturbation of the
function [44, Section 1.4] ensures that no two critical values
are equal. The simulated perturbation imposes a total order
on the vertices, which helps in consistently identifying the
vertex with the higher function value between a pair of
vertices. Regular vertices and degree-2 saddles are often
inserted into the Reeb graph as degree-2 nodes to obtain
the augmented Reeb graph.



Fig. 3. The Reeb graph for the height function defined
on a solid vase.

2.5 Contour trees

The Reeb graph of a simply connected domain has no loops
and is called a contour tree. The key idea in our proposed
approach to compute Reeb graphs is to optimize the use
of the efficient contour tree algorithm. For completeness,
we briefly describe the contour tree algorithm. For a more
detailed description, we refer the reader to the paper by
Carr et al. [26].

The contour tree algorithm makes two passes over the
data to compute the join tree and split tree of the input.
The join tree tracks the connectivity of super-level sets
of the input scalar function and identifies all the maxima
and join saddles of the contour tree. It is computed by
first sorting the vertices of the input in decreasing order of
function value. Next, for each vertex u in this sorted list,
the algorithm performs the following operations:

o If u is a maximum (its upper link is empty), create a
new component containing u and set u as its head.

« If the upper link is not empty, find the components that
contain the vertices in the upper link of u. Add an arc
between u and the head of each of the components.
Merge these components and set u as the head of the
merged component. If the number of components is
greater than one then u is a join saddle.

Similarly, the split tree tracks the connectivity of the sub-
level sets and identifies the set of minima and split saddles.
It is computed by traversing the vertices in increasing order
of function values. The join and split trees are merged to
obtain the contour tree.

3 ALGORITHM

This section describes our Reeb graph computation algo-
rithm. For ease of explanation, we illustrate the algorithm
using the solid vase model (3-manifold with boundary)
shown in Figure 3. We note that the algorithm works
without any modifications for d-manifolds, d > 2, and non-
manifolds. The input to our algorithm is a triangle mesh
representing the input domain together with scalar values
defined at vertices of the mesh. The algorithm computes
the Reeb graph of this input in four stages:

1) Identify the loop saddles of the input.

2) Split the input at a function value infinitesimally above
that of the loop saddles to obtain a set of interval
volumes.

3) Compute the contour trees for each interval volume.
4) Construct the Reeb graph by computing the union of
these contour trees.

The rest of this section is organized as follows. We first
describe the characterization used for identifying loop sad-
dles in Section 3.1, followed by a detailed description of
the algorithm in Section 3.2. We analyze the time and space
complexity of the algorithm in Section 3.3. Extension of the
algorithm to handle saddles with degree greater than three is
described in Section 3.4. Finally, in Section 3.5 we discuss
the generality of our algorithm in handling d-manifold (d
> 2) and non-manifold input.

3.1

A chord in an undirected graph is an edge that connects
two nodes of a cycle in the graph, but is not part of the
cycle. A cycle is an induced cycle if the subgraph induced
by the nodes of the cycle does not contain a chord [45].
Loops in a Reeb graph correspond to the set of all induced
cycles in the graph.

Consider any loop L in the augmented Reeb graph of the
given input. Define the set V as the set of all vertices of
the input that belong to loop L. Figure 4(b) shows the Reeb
graph, corresponding to a loop in the vase model shown in
Figure 4(a), augmented with degree-2 nodes. The set Vi,
for this loop is highlighted in cyan. Define c¢; = inf(V})
and c¢; = sup(V,) where the vertices are ordered based on
the function values. If we sweep the input with decreasing
function value, then the split saddle c; begins the loop L,
while the join saddle c; ends it. We are interested in finding
all such loop saddles — a set of saddles that begin or end a
loop in the Reeb graph. The function values at these saddles
are in turn used to obtain a set of loop-free interval volumes.
This is accomplished by splitting the input at these saddles.

The set of all join or split saddles is a superset of the set
of loop saddles. Using it as a conservative estimate while
splitting the input domain may lead to an unnecessarily
large number of interval volumes. In order to reduce this
overhead, we utilize the contour tree algorithm to find a
better estimate of the set of loop saddles. The following
lemma provides us with the necessary condition to compute
this set.

Lemma 1: Let Gg be the Reeb graph of a scalar function
f. Consider the join tree 7j of f. Any join saddle that ends
a loop in Gg appears as a degree-2 node in 7.

Proof: Consider a split saddle ¢, that begins a loop L
in Gg. Let this loop end at the join saddle c;. Let V; be
the set of vertices that belong to the loop L. Consider the
algorithm that computes the join tree 7y of f and a vertex
uj € Vi, with f(u;) < f(cs) and u;j # c;, that is processed
by the algorithm. Let u € Lk™ (u;) be a vertex in the upper
link of u; such that u; € Vz. Due to the way the join tree
algorithm works, u; will be in the same component as c;.
This is true for all vertices in Vj.

Now, consider the step when c; is processed by the join
tree algorithm. Its upper link Lk™(c;) will consist of two
components. Vertices in both components belong to L, and

Loop saddles
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Fig. 4. Join saddles that end a loop in the Reeb
graph form degree-2 nodes in the join tree. (a) A loop
in the vase model is highlighted. (b) The Reeb graph
within the highlighted region augmented with degree-
2 nodes. (c) The augmented join tree corresponding
to the loop. Note that c;, the join saddle that ends the
loop, forms a degree two node in the join tree.

will therefore belong to the same component as c¢;. Hence,
the join tree algorithm will add only a single arc between
c¢j and the head of this component to 7;. For every node
in the join tree T, the number of neighbors with function
value less than the node is always one. Hence, the degree
of ¢; in the join tree T; is two. O

Figure 4(c) shows the join tree corresponding to the loop
in Figure 4(a) where c; is a degree-3 node in the Reeb graph
and a degree-2 node in the join tree. A similar proof can
be used to show that any split saddle that begins a loop
appears as a degree-2 node in the split tree.

3.2 Computing the Reeb graph

We now explain the first two steps of the Reeb graph
computation algorithm in detail, while the third and fourth
steps of the algorithm are straightforward.

Step 1: Identify loop saddles. The algorithm first identifies
all potential loops of the Reeb graph. Each loop is repre-
sented by the join saddle that ends the loop. The algorithm
computes the set of loop saddles as follows:

i. Compute all critical points of the input. This is accom-
plished by counting the number of components in the
upper and lower links of every vertex via a breadth
first search in the graph formed by vertices and edges
in the upper and lower links respectively. Figure 5(a)
highlights the critical points of the vase input. The blue,
green, and red nodes denote the set of minima, saddles,
and maxima respectively.

ii. Compute a superset S of the set of join saddles. This
set S is equal to the set of all critical points whose
upper link consists of two components. For the vase
input, S = {c4,cq,c7}-

iii. Compute the join tree 7y of f. The join tree of the vase
input is shown on the right in Figure 5(a).

iv. Identify the set of loop saddles. A superset of the
set of loop saddles Sy is obtained using the charac-
terization from Lemma 1. It is defined as S; = {¢; €
S | deg(c;) in Ty = 2}. The join saddles c¢g and c;
correspond to loop saddles in Figure 5(a), since they
form degree-2 nodes in the join tree.

In case of a 2-manifold input, the set of split saddles of
the input are also identified as loop saddles. This is because
the upper and lower links of all saddles in such input
consists of two components. Similarly, degree-2 saddles
present in three and higher dimensional input are included
in the set of loop saddles. However, such false positives
can be identified and eliminated when splitting the input.

Step 2: Split the input. For each potential loop saddle
¢j in S, the algorithm splits the input at a function value
f(cj)+ €, for an appropriately small value of €. The set
of interval volumes thus obtained have the property that
their Reeb graphs do not contain loops, and can therefore
be computed using the contour tree algorithm of Carr
et al. This operation is illustrated in Figure 5(b). It is
accomplished during a sweep of the vertices in the input in
increasing order of function value. While processing each
vertex u in this sweep, the algorithm maintains the set of
all triangles T that contains the level set at f(u). The set
T is initially empty. Each vertex u is processed as follows:

i. Remove the triangles in the lower star of u from T.

ii. Add the triangles in the upper star of u to 7.

iii. If u € S, perform a breadth-first traversal along ad-
jacent triangles in T to obtain the set of connected
components of the level set at f(u) + €.

iv. Split the input along this level set, creating a new
maximum-minimum pair for each component.

In step (iii) above, if the traversal starting from one com-
ponent of a loop saddle c;’s upper link reaches the other
component, then it implies that the level set at f(c;)+&
contains just one component, and c; is therefore not a join
saddle. When the algorithm encounters such a situation, it
classifies c; as a false positive, and does not split the input
at that vertex.

The split performed in step (iv) is realized by “cutting”
each triangle in the maintained set 7 and connecting the
edges of the level set to two new extrema, a maximum
and a minimum, thereby creating a set of triangles that
belong to either the lower star of the maximum or the
upper star of the minimum. Figure 6 shows the set of
created triangles which are part of the lower star of a new
maximum. Vertices colored yellow in Figure 5(c) denote
all the additional extrema created for the vase input.

Each new triangle corresponds to an edge in the level set,
which can in turn be uniquely identified by a triangle in the
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Fig. 5. The Reeb graph computation algorithm. (a) The join tree for the input is computed and the loop saddles
are identified. Here, ¢ and ¢; are identified as loop saddles. (b) The input is split at a function value infinitesimally
above that of the loop saddles to obtain a set of interval volumes. (¢) The contour tree for each interval volume
is computed. (d) The contour trees are merged to obtain the Reeb graph of the input.

Fig. 6. The split operation performed on triangles
(gray) that contain the level set (green) at a function
value infinitesimally above that of a loop saddle. The
yellow triangles denote the lower star for the new
maximum that is inserted. Each triangle in this star
contains an edge that lies within a gray triangle. The
lower star of the new maximum is represented using
the gray triangles.

input mesh. This property is utilized by our algorithm to
represent each new triangle using an existing triangle. Also,
the lower star of a new maximum (respectively, the upper
star of a new minimum) is a connected component of a level
set. This fact enables the algorithm to represent all triangles
in the lower star of the maximum (respectively, upper star
of the minimum) using a single triangle that contains this
level set component. When required, the other triangles in
the star are obtained by marching along adjacent triangles
starting from the representative. If a triangle is already split
then it implies that this triangle spans a function range that
encompasses more than one loop, and is therefore not split
a second time.

Step 3 and Step 4. The algorithm computes the contour
trees of the individual interval volumes (Figure 5(c)) and
constructs the Reeb graph of the input by merging the
maximum-minimum pairs created in Step 2 (Figure 5(d)).

3.3 Analysis

We now analyze the running time of the algorithm and the
space required in the worst case scenario.

3.3.1

Let v be the number of vertices, n be the number of triangles
and s be the number of saddles in the input. Identifying
the loop saddles requires the computation of critical points
which in turn requires the computation of the number of
connected components of the lower and upper links of each
vertex. This takes O(n) time if the mesh is represented
using the triangle-edge data structure [46]. Computing the
join tree requires sorting the input that takes O(vlogv)
time, and a set of O(n) union-find operations, that takes
O(na(n)) time. Here, o is the inverse Ackermann function.

In order to obtain the set of loop-free interval volumes,
the algorithm performs at most |S;| cuts to the input. The
size of the set Sy is bounded by the number of saddles s.
Each cut requires the traversal of a level set, whose size is
at most n. Hence, the time required to perform these cuts
is bounded by O(sn). The new extrema are then inserted
into the sorted list of vertices at the appropriate positions.

Computing the set of contour trees requires computing
the join and split trees of each interval volume. Since the
set of critical points are already identified and sorted, the
join and split trees can be computed in (rn+sn) time using
monotone paths [35]. Reconstructing the Reeb graph from
the set of contour trees is done by merging the various
maximum-minimum pairs, which can be done in O(n) time.
Combining the above steps, we obtain an O(vlogv + sn)
bound on the running time of the algorithm.

Time complexity

3.3.2 Space complexity

The triangle-edge data structure stores the triangles adjacent
to each edge in the form of a triangle fan. This requires
storing pointers to previous and next triangle for each edge
of a triangle, a total of 6n pointers. The algorithm requires
the star of each vertex in order to classify the critical points.
For manifold input, this can be accomplished by traversing
adjacent triangles using the triangle-edge data structure. But
this method does not work for non-manifold input where
the star of a vertex could consist of multiple components.
Hence, all triangles in the star of each vertex need to be
stored, a total of 3n triangles.



While splitting the domain into interval volumes, the
algorithm stores a seed triangle for each component of the
|Sz| level sets. The number of such components is bounded
by n. The auxiliary data structures required during the
computation, such as the union-find data structure, vertex
list, the edge lists representing the join and split trees, and
the reconstructed Reeb graph together requires O(n) space.
Thus the over all space required for computing the Reeb
graph is bounded by O(n).

3.4 Handling higher degree saddles

A PL function may contain saddles that appear as Reeb
graph nodes with degree greater than three. The sum of the
number of components in the upper and lower link of such
a saddle is greater than three. Loop saddle identification,
based on Lemma 1, extends to these higher degree saddles.
Consider a higher degree saddle which merges m level
set components and ends k loops. The degree of the
corresponding node in the join tree becomes m —k+ 1.

We extend our algorithm to handle higher degree saddles
by modifying the loop saddle identification step as follows
— given a join saddle c¢; having m components in its upper
link, if the degree of c; in the join tree 77 is less than m+1,
then c; is added to the set Sy. The rest of the algorithm
remains unchanged.

3.5 d-manifolds and non-manifolds

The connectivity of a level set is represented by its 1-
skeleton. Therefore, tracking the connected components of
the level set requires only the edges of the level set, which
can be extracted from the triangles of the input mesh. So the
algorithm works without any modifications for a d-manifold
input represented by its triangles.

The algorithm expects the input to be a collection of
triangles. In case of non-manifold input, edges that are not
incident on any triangle in the input are replaced by a trian-
gle, with the additional vertex of this new triangle having a
function value equal to the average of the function values
of the two end points of the edge [32]. This modification
of the input does not affect the Reeb graph of the input
because the newly introduced vertex is regular. Candidate
critical points are again located by counting the number of
connected components of the lower and upper link. Note
that the size of the input remains unaffected asymptotically.

4 IMPLEMENTATION

In this section, we describe some of the design choices
made during the implementation to handle generic input
and to improve the performance of our algorithm. Our
implementation accepts a function sampled at vertices of
a simplicial mesh as input and computes the Reeb graph,
which is stored as a set of arcs. In Section 4.1 we discuss
the implementation issues related to handling input data
in higher dimensions. We then describe the in-memory
implementation of the algorithm in Section 4.2, followed
by its extension to handle large data in Section 4.3.

e
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Fig. 7. Our in-memory implementation performs splits
on one of the arcs corresponding to a loop saddle. The
maximum-minimum pairs shown in yellow denotes the
two cuts performed by this modified procedure for the
vase input instead of the five cuts shown in Figure 5(c).

4.1 Triangle-edge data structure

The triangle-edge data structure stores the triangles of the
input sorted around an edge. While this is feasible for
two and three-dimensional input, there is no natural order
among triangles for higher dimensional data. Our algorithm
uses the triangle-edge adjacencies only for breadth-first
traversal performed during the split operation. Since this
operation does not depend on the ordering of the triangles
around an edge, we arbitrarily order the triangles around
each edge.

4.2 In-memory implementation

We modify the Reeb graph computation algorithm to take
advantage of the fact that the entire data set along with all
the auxiliary data structures is available in memory. Instead
of splitting the entire level set at a loop saddle, it suffices
to split the level set component corresponding to one of
the arcs of the loop. We compute the contour tree of the
resulting connected loop-free subvolume, merge the newly
inserted maximum-minimum pairs to obtain the loops and
hence construct the Reeb graph. Figure 7 illustrates this
modified procedure on the vase input, where we perform
cuts only on two components of the level set instead of the
five components as required by the unmodified algorithm.
The use of this modified procedure not only reduces the
overhead of additional splits, but also enables us to perform
further optimizations to our implementation.

The in-memory implementation first sorts the vertices of
the input in increasing order of function value. This sorted
set is stored as a list. Finding all critical points followed by
computing the join tree of the input to identify loop saddles
would require two passes over the data, while computing
the join tree of the split domain would require an additional
pass. Our implementation combines all three operations into
a single pass, thus saving processing time. To achieve this,
we modify the join tree / split tree computation algorithm
as follows.



4.2.1 Computing the Join tree

A key difference between the join tree algorithm described
by Carr et al. and our implementation is that we keep track
of the components of the super-level sets using triangles
instead of vertices. While processing each vertex, it is first
classified as regular or critical and processed accordingly:

o Regular: The component containing the vertex is
obtained from the triangles incident on its upper link.
All triangles in the lower star of the vertex are assigned
to this component.

o« Maximum: A new component is created and all
triangles in the lower star are assigned to this com-
ponent. The maximum is assigned as the head of this
component.

« Join Saddle: The triangles incident on the upper link
of a join saddle c¢; belong to m (m > 2) level set
components. m arcs are inserted into the join tree,
between ¢; and the heads of the m components. The
components are then merged, all triangles in ¢;’s lower
star assigned to the resulting component, and c; is set
to be the head of this component.

« Loop Saddle: The vertex is essentially a join saddle
c¢j, where all triangles incident on at least two compo-
nents of the upper link belong to a single component
of the super-level set. Let the number of upper link
components sharing a super-level set component be k.
This results in a join saddle that closes k — 1 loops
with respect to the super-level set component. The
loop is split along (k— 1) components of the level
set passing through the upper star of cj, to create
the required maximum-minimum pairs. The function
value at each maximum is set to f(c;)+ &, while that
at each minimum is set to f(c;) 4+ 2€& where € is an
infinitesimally small positive value. These extrema are
inserted into the sorted list after ¢;. The new minima
and maxima are then processed before processing c;
again. Note that when c; is processed the second time,
it will be processed as a normal join saddle. Each time
a level set traversal starting from one component of the
upper link reaches another component, the value of k
is decreased by one. If k becomes one, then this loop
saddle is classified as a false positive, and processed
as a regular vertex.

« Split Saddle: The triangles incident on the upper link
of a split saddle c¢; belong to a single component. An
arc is inserted into the join tree between c; and the
head of that component. The triangles in the lower
star of ¢y are then added to this component and c; is
set as its head.

e Minimum: The triangles in the upper star of the
minimum belong to a single component. An arc is
inserted into the join tree between the minimum and
the head of this component. The minimum is set to be
the head of the component.

The split tree is computed in a similar manner. Note
that since the domain is already split while computing the
join tree, it is not necessary to check for loop saddles

and perform any additional processing while computing the
split tree. The contour tree is computed using the merge
procedure as described by Carr et al., and finally the newly
introduced maximum-minimum pairs are merged to obtain
the Reeb graph.

The advantage of using triangles to track the super- and
sub-level set components is two-fold — (1) the first, second
and third steps of the algorithm are executed during a single
pass instead of three passes, and (2) additional vertices need
not be generated for each triangle that is cut, an operation
that is necessary for computing the join and split trees using
the algorithm described by Carr et al. This results in savings
on the memory used by the algorithm.

4.3 Handling large input

We now discuss a direct extension of our algorithm to
compute Reeb graphs for large data that do not fit in
memory. The main idea is to split the input into interval
volumes that fit in memory, and compute the Reeb graph
of the input scalar function by combining the Reeb graphs
of the individual interval volumes.

4.3.1

In our implementation of the out-of-core algorithm, the
input is split into multiple interval volumes based on the
input function. The required interval volumes are obtained
by dividing the entire function range based on the number
of vertices in the input. This requires sorting the vertices
of the mesh on the associated scalar values and partitioning
them into intervals. Our implementation currently assumes
that the vertices fit in memory and performs an in-memory
sort. For example, given a memory limit of 4 GB, an input
having 500 million vertices can be easily stored in memory.
This is because it is necessary to store only the function
values of each vertex along with the pointer reference to
its sorted position, a total of 8 bytes per vertex.

The triangles are assigned intervals depending on the
lowest function value of its vertices. Note that a triangle can
belong to multiple intervals, in which case it gets carried
over to the appropriate intervals when processing those
intervals. One persistent file is created for each interval
and triangles belonging to that interval are written into the
file. This process requires one pass over the input data.

Dividing the input

4.3.2 Computing the Reeb graph

Our implementation first computes the Reeb graph of each
interval volume, which now fits in memory. The intervals
are processed in increasing order of function value. Each
interval creates a maximum-minimum pair for every arc
of the Reeb graph that spans that interval volume’s upper
boundary. Each extrema pair have an associated set of
triangles that belong to their star. These triangles span more
than one interval volume, and are retained in memory until
all interval volumes that overlap their span are processed.
A component consisting of an extrema pair together with
its associated triangles is called a boundary component.



TABLE 2
Reeb graph computation time for various 2D input. For all models, the Reeb graph was computed for the height
function defined by the y-axis. Mem denotes that the algorithm ran out of memory when trying to compute the
Reeb graph. RECON is at least 50% faster than ONLINE and at least 10 times faster than OS and RAND.

# Potential Time taken (sec)
2D Model | # Triangles # Critical Points | Loop Saddles | # Loops RECON | ONLINE oS RAND
Youthful 3.4M 27,627 5,588 506 2.4 6.0 47.2 54.0
Neptune 4.0M 1,752 563 3 2.6 8.7 42.0 37.3
Awakening 4.0M 17,031 2,360 1,643 2.4 6.7 414 51.8
Day 6.0M 104,898 12,546 2,161 4.3 10.3 91.3 67.5
Dawn 6.6M 91,640 8,592 757 4.5 11.5 73.2 71.8
Lucy 28.0M 9,521 2,462 15 34.2 60.1 Mem Mem

The in-memory implementation is used to compute the
Reeb graph of each interval volume. In practice, many
boundary components may not be accessed while pro-
cessing a particular interval. Such situations occur when
triangles of the boundary component are not incident on any
vertex within the interval volume. Retaining all such com-
ponents in memory can potentially result in exceeding the
available memory. To avoid such situations, these unused
boundary components are stored in persistent temporary
files until they are necessary. This requires an additional
step of determining the interval volume that requires a
particular boundary component and storing it appropriately.

Once the Reeb graph of all interval volumes are com-
puted, the Reeb graph of the input is constructed by
merging the additional maximum-minimum pairs that were
created.

4.3.3 Handling large interval volumes

A potential problem with the method described above to
handle large data is that, storing the entire interval volume
in memory is not feasible when it is large. Such a situation
may occur, for example, when a single level set is large.
We have noticed that in practice, such interval volumes
typically consist of multiple components. Our implemen-
tation stores these components in persistent storage and
loads them into memory only when required. While this
strategy handles almost all memory issues, this method
will still run into trouble if a single level set component
cannot fit into memory. Also, if large level sets are common
then the I/O overhead increases, potentially slowing down
the Reeb graph computation. A possible solution we are
currently exploring in order to avoid such issues is to use
the collapse operation proposed by Harvey and Wang [30],
but applied to a single level set. Since this operation
essentially collapses triangles, it reduces the size of the
level sets, thus allowing the algorithm to handle large level
set components.

5 EXPERIMENTAL RESULTS

The in-memory variant of our Reeb graph computation
algorithm is implemented in C++, while we use Java
to implement the out-of-core version. We evaluated the
performance of our implementations on an Intel Xeon
workstation with a 2.0 GHz processor and 16 GB main
memory. First, we report the performance of our algorithm

when working with data in memory and compare it with
existing algorithms. We then discuss the performance of
the out-of-core implementation on large data. For the out-
of-core experiments, we restrict the memory availability of
the program to 4 GB. For all comparisons with existing
algorithms, we used the implementations provided by the
respective authors. In cases where the implementation was
not available, we use the timings from the corresponding
paper. In the remaining discussion we refer to our imple-
mentation as RECON.

5.1 In-memory experiments

2D and 3D data. Table 2 shows the time taken by
RECON to compute the Reeb graph for surface meshes.
We compare our algorithm with the online algorithm
(ONLINE) [29], which exhibits the best performance for
2D meshes among existing algorithms, the output sensi-
tive algorithm (OS) [32], and the randomized algorithm
(RAND) [30]. Our algorithm is an order of magnitude faster
than the generic algorithms, and at least 50% faster than
the online algorithm.

Table 3 compares RECON with loop surgery (LS) [33],
output sensitive (OS) and the randomized (RAND) algo-
rithm for three-dimensional input. We do not consider the
online algorithm since it was previously shown to perform
poorly for such input [32], [33]. For 3D input, RECON
performs at least an order of magnitude faster than the
generic algorithms, while its performs at least as fast as
loop surgery, the fastest known algorithm for such input.
The LS algorithm first computes the Euler characteristics of
the 2D boundary of the input. If it detects that the boundary
has no loops, then the contour tree is directly computed.
The identification of loop saddles is performed only when a
loop is detected in the input’s boundary. Note that RECON
performs at least twice as fast as LS in the latter case,
for example in the Skull, Post and CubeHoles datasets. See
Section 6.2 for a detailed comparison between RECON and
LS algorithm.

Tables 2 and 3 also show the number of vertices classified
as critical points along with the number of potential loop
saddles, and the actual number of loops in the input. Note
that for 2D input, the split saddles are also classified as
potential loop saddles. In the case of 3D input, majority of
the points classified as potential loop saddles correspond



TABLE 3
Reeb graph computation time for various 3D input. The scalar function was provided with the dataset. RECON is
at least one order of magnitude faster and up to two orders of magnitude faster than OS and RAND. The time
taken to compute the Reeb graph is comparable for RECoN and LS. Seg indicates that the code exited with a

segmentation fault.

# Potential Time taken (sec)
3D Model # Triangles # Critical Points | Loop Saddles | # Loops RECON LS oS RAND
Fighter (3D) 143,881 6,787 1,717 0 0.2 0.1 123.8 6.5
Blunt fin 451,601 1,921 560 0 0.2 0.3 233 12.5
Bucky Ball 2,524,284 6,664 1,230 0 1.2 1.6 197.9 63.6
Plasma 2,646,016 4,719 935 0 1.5 1.9 396.3 132.7
SF Earthquake | 4,198,057 20,655 529 0 2.4 2.8 598.1 166.9
Skull 336,296 26 15 2 0.1 0.3 34 2.2
Post 1,243,200 247 64 0 0.4 0.9 13.0 14.5
CubeHoles 2,355,234 2,402 1,300 1,200 32 Seg 97.7 23.0
TABLE 4 TABLE 5

RECON exhibits consistent performance for similar
sized models with different number of loops. The
model sxd-y denotes an x-dimensional Sierpinski

simplex subdivided y times.

Model | # Triangles | # Loops | Time taken (sec)
s4d-7 0.8M 1x10° 0.7
s5d-6 0.9M 1x10° 0.7
s4d-8 3.9M 5.8x10° 3.6
s5d-7 5.6M 5.6x10° 4.4
s6d-6 4.1M 2.9x10° 2.9
Lucy 28.0M 15 342
s6d-7 28.8M 2x10° 21.2

to regular points on the boundary. In both cases, these
false positives are handled while performing the breadth-
first traversal to split the input. We also observe that the
additional processing does not significantly impact compu-
tation time. For example, even in the case of the Day model,
which contains the largest number of false positives (greater
than 10,000), RECON requires less than 10 milli-seconds
to discard these vertices.

Higher dimensional data. Figure 8 compares the perfor-
mance of RECON, OS, and RAND algorithms for 4-, 5- and
6-dimensional data. The input to these experiments were a
set of Sierpinski simplexes in the corresponding dimension
together with the height function. The number of loops in
the Reeb graph also increases with increasing input size for
these data sets. For the largest 6-dimensional model (s6d-
7) with approximately 28.8 million triangles, OS algorithm
threw a memory exception, while the RAND algorithm ran
out of memory and started thrashing. These plots show that
our RECON implementation not only performs much better
than the other algorithms, but also exhibits a consistent
performance with increasing dimensions.

In Table 4, we group models of approximately same
size, but with different number of loops in the Reeb
graph. Notice that RECON’s execution times do not change
significantly when the number of loops in the input changes.
This is true even when the number of loops changes from
15 in Lucy to around 2 million in the case of s6d-7. Figure 9
shows the Reeb graphs computed for the height function of
a 2D, 3D, and non-manifold input respectively.

Reeb graph computation times for noisy versions of
various models (denoted by *).

Time taken (sec)
Model # Critical Points | RECON | ONLINE | LS
Dawn* 1,924,221 10.8 26.8 NA
Lucy* 7,520,211 71.2 585.9 NA
Plasma* 6,765 1.5 NA 2.1
SF Earthquake* 46,908 3.0 NA 3.1

Noisy data. Our 2D and 3D experiments were performed
on real world data sets. Also, most of these data sets are
noisy, as can be seen by the number of critical points in
them. In order to stress test the algorithm, we artificially
introduced Gaussian noise to the input, and computed the
Reeb graph for the resulting data set. Table 5 shows the
results from this experiment. Note that in the Dawn model,
which was already noisy to begin with, adding additional
noise increased the number of critical points by a factor
of 20 to around 2 million critical points. This accounts for
about 60% of the input vertices. Similarly, for the Lucy
model, the increase in the number of critical points is
almost three orders of magnitude and consists of more than
half the input vertices. We notice that RECON performs
efficiently even in such extreme scenarios. The running
time doubles for RECON while the performance of ONLINE
and LS reduces significantly. These observations hold for
the remaining data sets also. For a given input size, the
time required to sort the input vertices and identify critical
points remains constant, and contributes to about 50% of
the total running time for the above data sets. The increase
in number of critical points, caused due to the introduction
of noise, mainly affects the steps corresponding to the
identification of false positive loop saddles, and the merge
procedure that constructs the contour tree from the join
and split tree. The time taken by these two operations,
which is less than 1% of the total running time, increases
proportionally with the number of critical points. The
increase in running time of the algorithm is primarily due
to these two steps.

5.2 Experiments with large data

Table 6 shows experimental results of the out-of-core im-
plementation. We compare it with the online algorithm for
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Fig. 8. Comparison of RECON, OS and RAND algorithms for different sized Sierpinski simplexes in four, five, and
six dimensions. The time required to process each triangle remains consistent for RECoN with increase in size
as well as dimension of the input. Further, the time required is lower than that for OS and RAND

Fig. 9. Reeb graphs of height function defined on various models. (a) 2D Pegaso model. (b) Volume rendering
of a 3D CAD model along with the simplified Reeb graph. (¢) Reeb graph of a non-manifold mesh representing a

three-dimensional Sierpinski simplex.

large data sets available from the Stanford data archive [47].
Note that even for the Atlas model which has approximately
500 million triangles, the total time taken to compute the
Reeb graph is only around 40 minutes. The timings for
the online algorithm are as reported in the paper [29]. The
online algorithm requires finalization of the input to be
performed only once irrespective of the input function used
to compute the Reeb graph. Since our method constructs
the interval volumes based on the input function, it has to
perform this operation once for each function.

6 DisCuUsSION

We now discuss a space-time trade-off issue related to
the in-memory implementation. We also present a detailed
comparison between our algorithm and the loop surgery
algorithm and the consequences of the various difference
between the two approaches.

6.1 Storing triangle adjacencies

Our in-memory implementation stores the star of each
vertex as well as the triangle adjacencies using the triangle-
edge data structure. These triangle adjacencies can be ob-
tained from the star, and thus it is not necessary to explicitly
store the adjacencies. However, this results in increased
effort for performing traversals, since the algorithm has to
process more triangles to determine adjacencies, and hence
the overall computation time increases. But an advantage

TABLE 7
Comparison of running times between RECoN’, which
uses the star of a vertex to find triangle adjacencies,

and RECON.
Time taken (sec) Memory
Model # Triangles | RECON | RECON’ saved
Dawn 6.6M 4.5 5.0 338 MB
Lucy 28.0M 34.2 34.5 1.3 GB
Plasma 2.6M 1.5 25 91 MB
SF Earthquake 4.1M 2.4 2.8 135 MB

of this approach is that the algorithm can process larger
data sets in memory because of the 6n space that is saved
by not storing triangle adjacencies. Table 7 compares the
running time when triangle adjacencies are stored (RECON)
and when they are not stored explicitly (RECON').

6.2 Comparison with Loop Surgery algorithm

While the goal of our algorithm is similar to that followed
by the loop surgery algorithm, namely to remove loops from
the input in order to use the contour tree algorithm, it differs
in the way this is accomplished. The main differences
between the two approaches are listed below:

e The Loop surgery (LS) algorithm analyzes the 2-
manifold boundary of the 3-manifold input to identify
loops, and is therefore restricted to 3-manifold input
that is embedded in R3. Our algorithm, on the other
hand identifies loops directly in the input. Our ap-
proach thus avoids the additional processing required



TABLE 6
Performance of the out-of-core implementation of RECoN for large 2D data sets. RECoN is faster than the
online algorithm for all inputs, up to a factor of 8 for the St. Matthew data set (y-coordinate). * denotes that the
running time for the data set is not available.

RECON ONLINE
Model # Triangles Function Creating interval | Reeb graph | Total Time Finalizing input | Reeb graph | Total Time
(millions) volumes computation computation
X 37.0s 3.0m 3.6m 2.6m 2.1m 4.7m
David 56M y 41.0s 3.Im 3.8m 2.6m 2.2m 4.8m
z 27.0s 2.7m 3.2m 2.6m 14.0m 16.6m
X 5.5m 21.4m 26.9m 25.0m 15.0m 40.0m
St. Matthew 372M y 3.9m 22.8m 26.7m 25.0m 3.8h 4.2h
z 2.8m 22.4m 25.2m 25.0m 16.0m 41.0m
X 7.2m 34.3m 41.5m * * *
Atlas 507M y 5.8m 32.7m 38.5m * * *
z 7.3m 35.3m 42.6m * * *

to find the boundary. It is also generic because we
work directly on the input.

e The LS algorithm follows a 3-step process to identify
the loop saddles of the input — it first determines if
the input has any tunnels by computing the Euler
characteristic of its boundary, and then uses the join
and split trees of the boundary to identify potential
loop saddles. Further analysis is performed at these
saddles to remove a subset of the false positives. Our
approach identifies the potential loop saddles directly
using the join tree of the input and removes false
positives using a simple BFS operation, which also
guarantees that all false positives are removed. Since,
it uses the join tree directly to locate potential loop
saddles, our algorithm works on both manifold and
non-manifold input in any dimension.

e The LS algorithm splits the input domain to generate a
single loop-free domain whose contour tree is used to
recover the Reeb graph. Our approach creates multiple
loop-free subvolumes, whose contour trees are stitched
together to obtain the Reeb graph. The advantage of
the latter approach is that the resulting algorithm scales
to handle large data. Additionally, since the contour
tree computation of each subvolume is independent
of each other, the contour trees can potentially be
computed in parallel.

e The LS algorithm explicitly stores the cuts that are
performed to remove loops, while our algorithm stores
only a representative triangle for each cut that is
performed. Thus, not only is the memory usage of our
algorithm reduced, but it is also bounded.

e The LS algorithm requires multiple passes over the
input in order to compute the Reeb graph. These
include passes over the input to obtain its boundary,
identifying saddles in the boundary, computing the join
and split trees of the boundary, and finally computing
the join and split trees of the input after performing
the surgery. Since our algorithm uses triangles to
track connectivity of the sub- and super-level sets, the
operations corresponding to identifying critical points
and loop saddles, performing the cut, and computing
the join tree of the split domain is accomplished in a

single pass over the input. Computing the split tree
requires a second pass. Our algorithm is therefore
efficient, especially for large data.

7 CONCLUSIONS

We have presented a practical algorithm to compute the
Reeb graph of PL functions defined on manifolds and non-
manifolds in any dimension. Since the algorithm essentially
performs a series of union-find operations, it is easy to
implement and efficient in practice. Experimental results
demonstrated that the algorithm performs at least as good as
other algorithms that are customized for a restricted subset
of the input and outperforms existing generic algorithms by
at least an order of magnitude. The algorithm’s performance
is consistent for various dimensions and with increase in
number of loops of the Reeb graph. It can also efficiently
handle large data sets that do not fit in memory.

Since the algorithm exhibits excellent practical perfor-
mance, we believe that the bound on the worst-case running
time is loose. It will be interesting to either provide a tighter
analysis of the algorithm or prove a lower bound that is
different from that of the contour tree computation.
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