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Abstract

Scientific phenomena are often studied through collections of related scalar fields such as data

generated by simulation experiments that are parameter or time dependent . Exploration of

such data requires robust measures to compare them in a feature aware and intuitive manner.

Topological data analysis is a growing area that has had success in analyzing and visual-

izing scalar fields in a feature aware manner based on the topological features. Various data

structures such as contour and merge trees, Morse-Smale complexes and extremum graphs

have been developed to study scalar fields. The extremum graph is a topological data structure

based on either the maxima or the minima of a scalar field. It preserves local geometrical

structure by maintaining relative locations of extrema and their neighborhoods. It provides a

suitable abstraction to study a collection of datasets where features are expressed by descend-

ing or ascending manifolds and their proximity is of importance.

In this thesis, we design a measure to understand the similarity between scalar fields based

on the extremum graph abstraction. We propose a topological structure called the complete

extremum graph and define a distance measure on it that compares scalar fields in a feature-

aware manner. We design an algorithm for computing the distance and show its applications

in analyzing time varying data such as understanding periodicity, feature correspondence and

tracking, and identifying key frames.
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Chapter 1

Introduction

Many scientific experiments and simulations measure physical quantities over a domain of

interest. The data thus generated is commonly represented as scalar fields. For example, med-

ical images generated from X-ray CT or MRI imaging techniques are scalar fields, simulations

performed for computational fluid dynamics or climate modeling can also be viewed as scalar

fields. Some examples of scalar fields are shown in Figure 1.1.

Prior research focussed extensively in developing methods to explore scalar field data and

to identify important features in the data. The features present in a scalar field play a key

role in understanding the properties of the scientific phenomenon being studied. Topological

data analysis attempts to understand scalar fields based on its critical points, level sets and

their connectivity. Based on these topological features, a number of data structures such as

contour and merge trees, Morse-Smale complexes and extremum graphs have been developed

to abstract and analyze scalar fields. These representations of the scalar field have been quite

successful in the exploration and visualization of scalar fields in a feature-aware manner.

In many instances, data is generated as a collection of closely related scalar field datasets.

Time varying data and ensemble data are often generated by scientists to better understand the

underlying scientific phenomenon of interest. For example, scientists may generate multiple

fields by altering simulation parameters to understand the nature of a phenomenon. Often, the

phenomenon being studied is inherently time varying such as climate data generated over mul-

tiple hours and days. Newer paradigms are needed to analyze such datasets and an important

1
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(a) A terrain rep-
resented as a 2D
scalar field, the color
map represents the
height.

(b) The electro-
static potential field
mapped to the sur-
face of Gramicidin
A molecule channel

(c) A 3D scalar field
from an industrial
CT scan.

(d) A 3D scalar field
from an XRAY-CT
scan of a human
body.

(e) Color
map.

Figure 1.1: A few examples of scalar fields (a-d) and the color map (e). Orange indicates high
scalar values and green indicates low values. All scalar field images in this thesis use this color
map.

step in this direction is to develop robust methods to compare similar scalar fields. Further, it is

pertinent to design similarity measures for comparing scalar fields in a feature-aware manner.

Hence, it is natural to examine similarity between scalar fields based on the similarity between

their topological abstractions.

1.1 Distance between Extremum Graphs

In this thesis, we study the problem of quantifying the similarity between scalar fields by

comparing their extremum graphs. More precisely, we compute a distance measure between

the extremum graphs of scalar fields.

The extremum graph is a topological data structure that captures the proximity between the

extrema in the scalar field [15]. It preserves local geometrical structure by maintaining relative

locations of extrema and their neighborhoods. It provides a suitable abstraction to study a

collection of datasets where features are expressed by descending or ascending manifolds and

their proximity is of importance.

In order to compare extremum graphs, we propose a topological structure called the com-

plete extremum graph and define a feature-aware distance measure on it. We design an algo-

rithm for computing the distance and show its applications in analyzing time varying data such
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as understanding periodicity, feature correspondence and tracking, and identifying key frames.

1.2 Contributions

We introduce a new distance measure between extremum graphs of scalar fields. The following

are the main contributions of this thesis:

• We introduce the notion of a complete extremum graph that associates proximity infor-

mation for all pairs of extrema in the extremum graph. The construction helps define

a distance between extremum graphs even when they differ in terms of the number of

maxima. We describe a simple algorithm to construct the complete extremum graph.

• We introduce a feature-aware distance measure between extremum graphs. Our distance

measure is based on the maximum common subgraph of the complete extremum graphs.

We discuss graph pruning and partitioning strategies to effectively compute the distance

measure.

• We demonstrate the effectiveness of the distance measure by applying it to understand

periodicity and to track features in time-varying data sets.

1.3 Organization

This thesis is organized as follows. We discuss concepts from topological data analysis neces-

sary to understand related work in the area and the proposed distance measure, in Chapter 2.

In Chapter 3, we discuss related work in the area. Various distance and similarity measures

have been introduced in the literature, we discuss these measures briefly and motivate the need

for a proximity-aware measure based on extremum graphs. We propose the topological struc-

ture called complete extremum graphs and its computation in Chapter 4. In Chapter 5, we

formulate the proposed distance measure for complete extremum graphs and discuss its prop-

erties. Applications of our distance measure in analyzing time varying datasets is discussed
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in Chapter 6. We conclude our discussion with promising directions and improvements in

Chapter 7.



Chapter 2

Background

In this chapter we introduce the necessary background to define and explain distance mea-

sures on topological abstractions. Primarily, we define topological features such as critical

points and level sets, and topological abstractions for scalar fields such as persistence dia-

grams, Reebgraphs, merge trees and extremum graphs.

Let f : D→ R be a scalar function defined on a smooth n-dimensional manifold, D. For

x ∈ D, if the gradient ∇ f (x) = 0, x is called a critical point of f on D. All other points are

called regular.

(a) f (x,y) = sin(x)+ sin(y) (b) ∇ f (x,y) (c) maxima(red), sad-
dles(yellow) and minima(blue)
of f

Figure 2.1: Critical points of f (x,y) = sin(x)+ sin(y)

The function f is called a Morse function, if all critical points are non-degenerate i.e.,

the Hessian matrix of second order partial derivatives is non-singular. Critical points can be

5



6 Chapter 2. Background

(a) maximum, index=2 (b) saddle, index=1 (c) minimum, index=0

Figure 2.2: Critical points and their indices.

classified using an index which equals the number of independent directions along which f

decreases. The index of a minimum is 0 and of a maximum is n. Saddles have indices from

n−1 to 1.

Gradients are well defined for regular points. Morse functions allow for a decomposition of

the domain D based on the integral curves of ∇ f . The union of all integral curves that terminate

at a maximum define the descending manifold of that maximum. An analogous segmentation

can be considered based on minima and their ascending manifolds [19]. Figure 2.6 shows the

integral curves of the gradient field for a simple function and its descending manifolds.

The level set of a function f : D→R takes the form L(c) = {x ∈D | f (x) = c}. Connected

components of a level set are called iso-contours. When D is a two dimensional manifold, these

are curves. In three dimensions, connected components of the level sets are called isosurfaces.

Sublevel sets take the form L−(c) = {x ∈ D | f (x) ≤ c} and superlevel sets are defined as

L+(c) = {x ∈ D | f (x) ≥ c}. Figure 2.3 illustrates level sets, sublevel sets and superlevel sets

for the scalar function f : [0,3π]× [0,3π]→ R , f (x,y) = sin(x)+ sin(y).

Features in topological analysis typically refer to critical points, their descending or as-

cending manifolds and level sets. By associating a notion of importance with features, they

can be analyzed in a hierarchical or multi-scale fashion.

Integral curves begin and terminate at critical points. Such critical points pairs, whose in-

dex differs by 1, can be cancelled and eliminated from the scalar field. Cancellations gives a

mechanism to simplify the scalar field by reducing the number of features or critical points.
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(a) L({. . . ,−0.1,0.1, . . .}) (b) L−(0.0) (c) L+(0.0)

Figure 2.3: Level sets, sublevel sets and superlevel sets of f (x,y) = sin(x)+ sin(y)

Figure 2.4 shows an example of a cancellation. Here, a maximum i.e., a critical point with

index two, is cancelled with a saddle of index one. To realize the cancellation of a pair, the

scalar function should be modified. The perturbation necessary is given by the difference in

the scalar values of the pair of points. In terms of the integral curves of the gradient vector

field, the flow is reversed along the critical point pair, giving a simplified field. Each simpli-

fication modifies the available pairs for surviving critical points. The maximum perturbation

necessary to simplify a set of critical points depends on the order in which they are simplified.

To optimally simplify a function f , with respect to the L∞ norm, critical point pairs can be

ordered according to the function difference their removal demands and simplified in order.

The difference associated with a pair of critical points provides a measure of importance in

terms of the local perturbation necessary to eliminate the pair and simplify the function. In

two dimensions, these pairs are equivalent to the homological persistent pairs. Persistence

gives a measure of importance to the topological features in the scalar field [20, 21]. In higher

dimensions, it may not be possible to cancel all homological persistence pairs. However, we

continue to refer to the function difference between a pair of critical points at the time of its

cancellation as its persistence.

Cancellations can be done based on other criteria as well, as long as the cancellation is

valid i.e., the gradient field after reversal remains acyclic.

Various topological abstractions have been derived based on these features and their rela-

tionships such as persistence diagrams, contour trees, Morse-Smale complexes and extremum
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(a) (b)

A

C

B

D E

F

G

(c)

A

C

B

D E

F

G

(d)

Figure 2.4: Extremum graphs provide an abstraction of scalar fields and encodes adjacency
relationships between the extrema of the field. (a) shows a 2D scalar function overlayed with
its extremum graph. (b) The extremum C can be simplified by a merger into extremum D.
(c) shows a combinatorial representation of the extremum graph. (d) Simplification of vertex
C into vertex D involves contraction of edge (C,D).
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birth

death

δ

(a) Persistence Diagram (b) A scalar field with its con-
tour tree overlayed

(c) A scalar field with its ex-
tremum graph overlayed

Figure 2.5: Topological abstractions

graphs. We now discuss a few of them.

Persistence Diagram. A persistence diagram encodes the persistence of features as

points in a plane [14]. It gives an overview of features-vs-noise in the scalar field, allowing

the user to reason about the amount of noise and important features. Though it gives a high

level overview of the critical points and their importance it does give any information about

the relationships between the critical points such as their proximity. Figure 2.5(a) shows an

example of a persistence diagram. The distance of a point from the diagonal gives a measure

of its importance. All points in the diagram that fall in the shaded region can be simplified

within a perturbation threshold of δ .

Contour tree / Reeb graph. The Reeb graph of a scalar field is a topological data structure

that tracks the changes in the number of connected components of its level sets [17, 32]. If

the domain is simply connected, the graph contains no loops and is called the contour tree.

Contour trees and Reeb graphs track the nesting structure of sub level sets and super level sets

in the scalar field. The merge tree and split tree are subsets of the contour tree that only tracking

the merging or splitting of sublevel sets respectively [11]. These structures have been used for

data analysis [1, 12] and designing transfer functions [45], in addition to other applications. As

seen in Figure 2.5 (b), this structure can relate geometrically near by points in a non-intuitive

manner.

Extremum graph. An extremum graph gives a proximity-aware description of the scalar
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field. The maximum graph relates the maxima and n−1 saddles based on adjacency. Analo-

gously, the minimum graph relates the minima and 1-saddles. For many datasets, often only

one type of extrema and their ascending or descending manifolds represent the features. For

such datasets, the extremum graph is a useful abstraction tool. Figure 2.5 (c) shows the ex-

tremum graph for the overlayed on the scalar field. It provides an intuitive and proximity aware

abstraction.

Correa et al. [15] introduced the extremum graph structure to develop a planar visual rep-

resentation of a scalar field called topological spines. An extremum graph is a representation

of the Morse decomposition. The graph is called a maximum (minimum) graph, when the

decomposition is based on the descending (ascending) manifolds. As the maximum graph of

f is equivalent to the minimum graph of − f , we restrict our discussion to maximum graphs

and refer to them as extremum graphs in this thesis. Figure 2.6 shows the maximum graph for

a simple function.

We combinatorially represent the extremum graph of a scalar field f : D→R by EG f (V,E).

The vertex set V consists of the maxima of f . A pair of vertices vi and v j share a saddle si j

if paths of steepest ascent from si j terminate at vi and v j. The edge (vi,v j) is used to denote

this adjacency between the descending manifolds of vi and v j. S(vi,v j) denotes the saddle

associated with the edge (vi,v j).

(a) integral curves of ∇ f (b) descending manifolds (c) extremum graph

Figure 2.6: Morse decomposition of f (x,y) = sin(x)+ sin(y)

In all these data structures, simplification based on persistence or other criteria is often

employed to remove noise and generate hierarchical representations [4, 15, 30]. Figure 2.4
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illustrates simplification of an edge in the extremum graph.
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Chapter 3

Related Work

Similarity detection is a well studied area in pattern recognition, geometry, graphics and com-

puter vision. Measures derived to compute (dis)similarity may satisfy metric properties, in

which case they are called distance measures. Other measures that do not satisfy all metric

properties may still be useful in discerning dissimilarity, such as the cosine similarity measure

for vectors. In this section, we discuss related work that compare scalar fields.

3.1 Geometry and Statistics

Many approaches assume a dense correspondence between the domains of the fields that are

to be compared. Once such a correspondence or alignment is established, the scalar field can

be compared. The simplest approach assumes that the domains are identical. The root mean

square distance, Chebyshev distance and other Lp metrics compare the scalar fields in a point

to point fashion.

Many statistical approaches to image comparison in the area of computer vision consider

the image as a gray-scale scalar field or multi valued color field. Histograms are often em-

ployed as a signature and various bin-to-bin or cross-bin measures have been used for compar-

ing them [13, 33]. Another popular feature descriptor is based on the maximal stable extremal

region [16, 26]. A component tree of the image is constructed and stable intervals are identi-

fied to extract important regions in an image. Image moments are then used to describe these

13
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features and compare them [22]. Moment based approaches have also been used to compare

vector fields [7].

Topological analysis attempts to understand the domain of the function based on the scalar

field defined on it by analyzing level sets, segmentations based on gradients and so on. Man-

ifold harmonics, a generalization of fourier analysis to manifolds, attempts to understand the

scalar function based on the domain over which it is defined [41]. They decompose the defined

function by using the eigen-functions of the laplace-beltrami operator as basis. The spectra of

the laplace- beltrami operator and its eigenfunctions have been heavily used in shape analy-

sis. Scalar fields defined over a 3D volume are common, especially in the form of simulation

and imaging datasets. Techniques that have been well studied in geometry and graphics can

be applied to iso-surfaces of these datasets. Thomas et al. [38] cluster isosurfaces based on

properties of the isosurface shape. They use a shape signature based on the laplace-beltrami

spectra and cluster contours in the signature space.

Information theoretic approaches have been proposed to identify important iso-values that

provide non-redundant information [6, 23] within the same or multiple scalar fields defined on

the same domain. Here isosurfaces are represented using their distance transform and mutual

information is used to identify these values.

The correlation between different functions which are not necessarily similar but defined

on the same domain have also been studied for exploring multi-field data [28, 35, 36].

3.2 Topological Data Analysis

We now discuss topology based distance measures and similarity measures that are closely

related to our proposed measure. We motivate the need for feature-aware and proximity sen-

sitive distance measures by identifying examples where existing measures may fail to provide

an intuitive measure of similarity or correspondence.
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3.2.1 Distance Measures

The size and complexity of scalar field datasets make it impractical to compare them directly

in a feature-aware manner. Several distance measures defined on topological abstractions have

been proposed in the literature to compare scalar fields indirectly.

The persistence diagrams of two scalar fields may be compared and the similarity between

them can be measured using a distance function like the bottleneck distance. For this, the

supremum distance between a point and its image under L∞ norm is considered for a given

mapping between the points. The bottleneck distance considers all possible mappings and is

the infimum among all such supremums. It is known that the persistence diagram is stable

under perturbations of the underlying function and therefore a large bottleneck distance im-

plies that the underlying functions are also dissimilar [14]. Closely related to the persistence

diagrams is the barcode descriptor which represents persistence of features as intervals in the

real line and has been used as a shape descriptor for point clouds [10]. The barcode metric is

used to compare barcodes and is computed using a maximum weight bipartite matching that

maximizes the intersection between the interval representation of the features. The persistence

diagram representation of a scalar field does not capture the neighbourhood relationship be-

tween the features since no adjacency constraints are imposed on the points in the persistence

diagram. This limits their use for comparing scalar fields.

Recent years have seen distance measures defined on Reeb graphs and its simpler variant

called the merge tree. Morzov et al. defines a distance between two merge trees called the

interleaving distance. They consider two continuous maps that shifts the points in each merge

tree onto the other under certain constraints and define the interleaving distance as the smallest

possible shift under which such maps exist [27]. Beketayev et al. propose another distance

measure on merge trees by examining the branch decomposition representations of a merge

tree with the aim of identifying isomorphic subtrees through cost functions for matching and

removing vertices in the branch decomposition representation [3]. The distance is defined as

the minimum cost for generating isomorphic subtrees among all possible branch decomposi-

tions of the two merge trees. Similar to the interleaving distance, Bauer et al. define functional

distortion distance between two Reeb graphs by considering two continuous functions that
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Figure 3.1: A merge tree, and its superset, the contour tree, captures the nesting structure
of level sets. For the two functions shown above (blue and red), no branch decomposition of
the merge tree (below) reflects the correspondence between nodes b to b′ and c to c′. The
extremum graph (dashed) captures proximity between the extrema and can provide a more
intuitive correspondence between them.

map points in each Reeb graph onto the other and minimizing, among all maps, the distortion

in the scalar values of the points under the map and their composition [2]. Figure 3.1 shows

two simple 1D functions with different nesting structures of the sublevel sets in the merge

tree. When these functions are compared using merge tree based measures [3, 27], the extrema

b, c and b′, c′ will be simplified rather than matched. On the other hand, extremum graph

based measures are able to associate these extrema and their descending manifolds intuitively

because they are based on proximity.

3.2.2 Similarity Measures

While the above methods define distance between topological structures in a rigorous manner,

several methods use simpler notions of similarity measures for identifying similarity between

scalar fields. One such approach is to define a similarity score between the Reeb graphs and

its loop-free variant, namely, the contour tree and have been used for matching shapes [24,

44] and identifying repeating features [39]. Saikia et al. recently introduced the extended

branch decomposition graphs as an efficient data structure to encode branch decompositions
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Figure 3.2: Comparing time step 0 of a synthetic dataset with time steps 0-500. Periodic
pattern can be identified from the earth movers distance as well as the extremum graph based
distance. However, with low persistence noise added, the earth movers distance fails to identify
the periodic pattern, the extremum graph based distance which is feature-aware, continues to
identify the pattern.

of all subtrees of the merge tree and use this to identify repeating features and periodicity in

time varying data through a matching procedure based on dynamic programming [34]. The

ability of the extremum graph to capture proximity relationship of the features has been used

to identify similar features within a dataset by comparing the geodesic distance between pairs

of extrema computed using an augmented version of the extremum graph [40].

The graph structure of the Reeb graph and merge tree naturally enforces adjacency con-

straints on the features in a scalar field. However, these constraints relate to the merging and

splitting of level sets and an edge may connect features that do not have close proximity. The

extremum graph is designed to capture the proximity of features in the field and our com-

parison measure therefore enforces proximity based constraints. Further, while most of these

structures are graphs, graph theoretic distance measures [8, 9] have not been adapted for the

purpose of comparing them. The complete extremum graph structure we introduce allows us

to design maximum common subgraph based distances for comparing extremum graphs. Our

distance measure is feature-aware and inherently handles topological noise that appear as in-

significant features. Figure 3.2 compares distances computed between time steps of a scalar



18 Chapter 3. Related Work

potential field derived from a 3-body choreography [25]. The earth movers distance, which is

based on histogram comparisons fails to detect the periodic pattern when noise is added. Since

our metric is based on the topological features, we discern patterns in the field even when low

persistence noise is added.



Chapter 4

Complete Extremum Graphs

When comparing multiple scalar fields based on their extremum graphs, we have to account

for difference in the number of extrema and their neighbourhood relationships. Towards this,

in this chapter, we discuss a topological data structure called the complete extremum graph and

introduce an algorithm to compute it.

The complete extremum graph captures pairwise relationships between pairs of extrema in

the extremum graph and records it in the form of a complete graph. Given a pair of extrema,

we associate with it, the local perturbation necessary such that the descending manifolds rep-

resented by these extrema become adjacent i.e., to introduce a shared saddle between them.

We also associate the saliency or importance of each extrema in terms of the local perturbation

necessary to eliminate it by suitably modifying the scalar field. The complete extremum graph

allows us to compare the proximity relationships, between all pairs of extrema.

4.1 Motivation

Consider the extremum graph in Figure 4.1. The maximum E can be simplified by merging

it with an adjacent maximum A. In terms of the underlying function f , the maximum E and

the saddle S = S(E,A) are cancelled by reversing the gradient flow direction along that path.

The cancellation or simplification can be viewed as a local perturbation of the function by

f (C)− f (S). This introduces adjacencies between the surviving maximum A and the other

19
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(a) A scalar field with its ex-
tremum graph overlayed

(b) Simplifying the extrema E
by merging with the extrema A

(c) Simplifying the extrema E
by merging with the extrema B

Figure 4.1: Effect of simplification choices on proximity of surviving extrema

neighbours of E. The maximum C and its associated edges are removed.

Hierarchical structures have been introduced for Morse-Smale complexes [4], contour

trees [30], and extremum graphs [15]. They simplify extrema in increasing order of persis-

tence and update the edge structure based on the simplification. Such approaches allow for

addition of edges between surviving maxima. A natural cost that can be associated with the

inserted edge is the persistence of the merged maximum that introduces it. However, there are

two issues with this approach. First, simplification strictly follows the order of persistence.

If the persistence values are not well separated, a small perturbation in function values can

lead to different graph representations. These choices further restrict subsequent simplifica-

tions and makes comparisons difficult. Second, persistence is a measure designed to identify

the minimum perturbation necessary to simplify extrema. The edge structure that follows the

simplification is a consequence of this choice. Therefore, the simplification threshold at which

an edge appears can overestimate the perturbation necessary to introduce adjacencies. In Fig-

ure 4.1, the maxima B and C can be made adjacent by merging the intermediate maximum

E with B. However, persistence directed simplification will merge E with A. Following this

simplification, B and C appear to be further away in the graph. Although persistence provides

an intuitive measure of importance for vertices, the ensuing simplification can provide a non-

intuitive measure for the edges. This motivates the design of a new measure that captures the

cost of introducing an edge in the extremum graph.

Let < v1, p1, p2, . . . , pn,v2 > be a path between maxima v1 and v2 in the extremum graph.
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If all the intermediate maxima pi can be simplified and merged into the end points, v1 and

v2 become adjacent. The perturbation required for this simplification, estimates the cost for

introducing the edge via that path. The minimum cost over all paths between a pair of maxima

provides an accurate cost to introduce the edge between them. Edges cannot be independently

eliminated during simplification. The cost of eliminating an edge is implicitly equivalent to

eliminating one of its vertices. We therefore only consider edges, whose costs do not exceed

the persistence of its end points and bound edge costs by the minimum of the persistence of its

end points. If there exists no path between a pair of extrema in the extremum graph, such as

when the domain is disconnected, the algorithm continues to assign the persistence of its least

persistent end-point as the cost of that edge. To better represent the domain, we can assign an

infinite cost to such pairs.

We represent the complete extremum graph as an attributed graph G f (V,E). The vertices

of the graph are identical to the vertices of the extremum graph. We associate with each vertex

vi, its persistence denoted by P(vi). The edges of the complete extremum graph extends the

edge set of the extremum graph by including edges between all pairs of maxima. The cost of

an edge is denoted by C((vi,v j)) such that C((vi,v j)) ≤ min(P(vi),P(v j)). We normalize all

scalar functions to have the range [0,1] ensuring 0 ≤ P(vi) ≤ 1 and 0 ≤ C((vi,v j)) ≤ 1. The

persistence or vertex attribute of the global maximum is set to 1. The cost of the edges present

in the extremum graph is set to 0.

We derive a distance measure between extremum graphs based on these vertex and edge

attributes.

4.2 Computation

We compute the extremum graph based on an approximate Morse decomposition [40]. The

approximate decomposition is fast and dimension independent but may introduce saddles be-

tween pairs of maxima whose descending manifolds do not share a saddle in the true decom-

position. Since we generate a complete graph, these additional edges have little consequence.

Computing all paths between every pair of maxima is computationally infeasible. We only



22 Chapter 4. Complete Extremum Graphs

require the minimum cost of a path between a pair of maxima. Any path between a pair of

extrema can be viewed as a one dimensional function. The optimal cost to simplify all inter-

mediate extrema of this path is equivalent to a persistence based simplification, restricted to

this path. Further, we bound the cost by the persistence of the end points as mentioned above.

We compute the minimum cost for pairs of extrema by modifying the simplification algorithm

to consider all relevant paths between maxima.

Algorithm 1 generates the complete extremum graph G f (V,E ′) for an input extremum

graph EG f (V,E) by computing persistence P for all maxima and edge costs C for all pairs of

maxima. Edges of the extremum graph are inserted in a priority queue, Q. The priority of an

edge (vi,v j) with saddle S(vi,v j) = s is the cost of simplifying the edge, i.e., f (vi)− f (s). We

assume that f (s)< f (vi)< f (v j) and simplifying an edge implies cancelling the maximum vi

and saddle s to merge them into v j . Note that the priority of an edge indicates the function

modification required to simplify the edge and the cost associated with each edge indicates

the function modification required to introduce the edge. When an edge is popped from the

priority queue, unlike persistence simplification, where all the other edges associated with

that maximum are deleted, we retain all other edges for subsequent simplification along other

paths. We introduce new edges between the neighbours of the simplified maximum vi and the

surviving maximum v j. The set of neighbours of a vertex v is denoted by N(v).

Note that while the other edges associated with the simplified maximum are retained, each

edge is simplified only once. The value associated with new edges introduced due to simplifi-

cation is not less than that of the simplified edge. During simplification, an edge may appear

between an already adjacent pair of maxima. If an edge appears between a pair of maxima

with a cost c and after further simplification a different path is identified between the same pair

at a cost c′ > c that introduces a higher saddle, only the saddle is updated and the cost of the

edge is not changed. Updating the saddle does not affect the priority ordering of edges that are

yet to be simplified.

Figure 4.2 shows a few steps in the construction of the complete extremum graph for the

graph shown in Figure 2.4. First, edge (F, G) is popped, and the persistence of vertex F is

recorded. As the vertex F has no neighbours, no further edges are added. The next edge with
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Figure 4.2: Construction of the complete extremum graph. (a) Input extremum graph EG.
(b) (F, G) is processed. (C, D) is processed introducing (A, D) and (B, D). Other edges associ-
ated with C are retained. (c) (C, A) is processed and (A, B) is introduced. (d) (A, E) is processed
introducing (E, D).

lowest function difference is (C, D) and is popped from Q . The persistence of the vertex C

is recorded. By simplifying vertex C, the maximum D now neighbours maxima A and B. The

simplified edge (C, D) is considered processed and the vertex C and D are no longer considered

neighbours in subsequent steps. As edges associated with C are still maintained inQ, (C, A) is

popped. The persistence of C is not changed and this simplification is used to identify (A, B)

and insert it. Next (C, B) is simplified followed by (A, E) introducing (E, D) and the persistence

of A is recorded. The remaining edges are processed similarly.
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Algorithm 1: CEG - Constructs the complete extremum graph
Input: Extremum Graph EG f (V,E)
Output: Complete Extremum Graph G f (V,E ′), P and C
for each (vi,v j) ∈ E do
C((vi,v j)) = 0
Q.push((vi,v j)) /* priority((vi,v j)) = f (vi)− f (s)*/
P(vi) = ∞ P(v j) = ∞

while !pq.empty() do
(vi,v j) =Q.pop()
ProcessedEdges.insert((vi,v j))
E ′ = E ′∪ (vi,v j)
s = S(vi,v j)
c = priority((vi,v j))
if P(vi) = ∞ then
P(vi) = c

N(vi) = N(vi)r v j

N(v j) = N(v j)r vi

for v′ ∈ N(vi) and (v′,v j) 6∈ ProcessedEdges do
s′ = S(v′,vi)
if C((v′,v j)> c then
C((v′,v j)) = c /* Update cost*/
S(v′,v j) = s′

Q.push((v′,v j))

else if f (s′)> f (s) then
S(v′,v j) = s′ /* Update saddle*/
Q.push((v′,v j))

for (vi,v j) ∈ E ′ do
C((vi,v j)) = min(C((vi,v j),min(P(vi),P(v j))
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4.2.1 Complexity

For an extremum graph with n maxima, the complete extremum graph consists of O(n2) edges.

Each edge is processed only once and using a min heap, insertions and deletions take O(log n).

Each iteration updates at most n edges, the time complexity of computing the complete ex-

tremum graph is O(n3 log n).

4.2.2 Correctness

We now show that the algorithm 4.2 assigns the correct cost to all edges in the complete

extremum graph. Consider a path < v1, p1, p2, . . . , pn,v2 > between maxima v1 and v2 in

the extremum graph. Let us assume that this path can be simplified into an edge (v1,v2) by

perturbing the function by δ - the minimum function perturbation required for introducing

(v1,v2).

First, we show that our algorithm assigns an edge cost C(v1,v2)≤ δ .

Case 1 : P(v1)< P(v2) and P(v1)≤ δ .

Given that the minimum cost of introducing the edge is δ and that we bound the edge costs by

the persistence attributes of its end point vertices, in this case (v1,v2) = P(v1)≤ δ trivially.

Case 2 : P(v1)< P(v2) and P(v1)> δ .

As the path < v1, p1, p2, . . . , pn,v2 > can be simplified within the perturbation threshold δ , the

intermediate edges in this path can be processed with priority less than δ . As the persistence of

v1 and v2 is higher, no edge involving the end point is processed before the intermediate edges

are processed. Hence the edge (v1,v2) is constructed at a cost not greater than δ . The path

realizing this edge need not be unique, however the minimum distance is uniquely computed.

Second, we show that if our algorithm assigns a cost C(v1,v2) = δ and P(v1) > P(v2) > δ ,

there exists no path in the extremum graph that can be simplified to introduce an edge (v1,v2)

with cost less than δ .

If such a path exists, the edge contractions that realize the edge (v1,v2) through this path have
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Figure 4.3: Updating the saddle of an existing edge does not violate the monotonicity intro-
duced by the priority queue.

priority less than δ . By construction, these edges will be processed first and the cost assigned

must be less than δ . Hence, we always assign the correct cost δ .

Finally, we clarify that the action of updating the saddle of an existing edge does not create

inconsistencies in the priority queue ordering. As shown in Figure 4.3, suppose an edge (m1,

m3) exists in the extremum graph. The edge (m1, m2) has minimum priority of p i.e., f (m2)−

f (s12) = p and can introduce a higher saddle s23 between (m1, m3) after it is processed. Then,

the following holds: (1) f (m3)− f (s23) > p and (2) f (m1)− f (s23) > p i.e., although the

priority value of the edge (m1, m2) decreases, it remains greater than p.

(1) trivially holds, since otherwise the edge (m2, m3) would be the selected with minimum

priority.

(2) Similarly,

f (m2)− f (s23)> p ∵ p is minimum

f (m1)> f (m2) ∵ p = f (m2)− f (s12)< f (m1)− f (s12)

∴ f (m1)− f (s23)> p

4.2.3 Implementation Details

To compute the extremum graph, we consider as input a surface mesh, structured grid or

unstructured grid. The scalar field is descritized and defined on the vertices of the mesh. We

assume that neighbourhood information can be computed from the mesh representation. The
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neighbourhood of a vertex is defined as the set of vertices with which it shares a common edge.

Each vertex is considered to have a unique scalar value, breaking ties based on index ordering.

To identify maxima vertices, we consider the upper link of a vertex i.e the mesh induced

by the set of neighbouring vertices with scalar value greater than the vertex. The upper link of

maxima are empty.

To compute the maximum graph, we first compute an approximate decomposition of the

vertices into descending manifolds [40]. We sort the vertices in decreasing order of scalar

values. Maxima are labelled uniquely as their upper link is empty. Each vertex is visited in

sorted order. The label of a vertex is set to the labels of the vertices in its upper link. Vertices

that lie on the shared boundary of two descending manifolds inherit multiple labels. The vertex

with the highest scalar value on a shared boundary is considered as the saddle between the two

descending manifolds.

The vertices of the maximum graph are the identified maxima. An edge is introduced for

every saddle, connecting the maxima on whose shared boundary the saddle lies. The edge

structure maintains its priority value, defined as the difference between the scalar value of the

lower maximum and the saddle. For every maximum, we also maintain a list of neighbouring

maxima, defined by edge adjacency.

To compute the complete extremum graph, we insert the edges into a priority queue based

on its priority value. Edges with lower value have higher priority. Edges are processed in order

of their priority, as discussed in the algorithm 4.2. The processed edge is popped from the

priority queue and new edges are pushed in based on the neighbourhood information of the

maxima represented by the edge. The priority value of the popped edge is stored as the cost

for the newly introduced edges. When the priority queue is empty, the complete extremum

graph is constructed.

An implementation of the complete extremum graph algorithm is available at https:

//bitbucket.org/vgl_iisc/compextgraph

https://bitbucket.org/vgl_iisc/compextgraph
https://bitbucket.org/vgl_iisc/compextgraph
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Chapter 5

Distance between Extremum Graphs

To compute the distance between a pair of extremum graphs, we adapt the maximum common

subgraph based measure [9] to the attributed complete extremum graphs. We find a correspon-

dence between the vertices of the complete graphs, with pairwise constraints enforced by the

edge costs. The quality of correspondence between a pair of vertices is measured by the differ-

ence in the persistence of the maxima they represent and is referred to as vertex distortion. As

the graph is complete, a pair of vertex correspondences determines their edge correspondence.

The difference in the cost associated with the corresponding edges indicates the quality of the

edge correspondence and we refer to this difference as edge distortion. Low edge distortion

in the complete extremum graph indicates high structural similarity between the extremum

graphs being compared. We introduce a parameter that controls edge distortion and compute

vertex distortions introduced by mappings that satisfy the edge constraints introduced under

this parameter.

5.1 Maps between extrema

Let G f (V,Ev) and Gg(U,Eu) be the complete extremum graphs of f : D → [0,1] and

g : D→ [0,1] respectively. We extend the vertex set of G f by a set of dummy vertices to obtain

V ∪{φ|V |+1,φ|V |+2, . . . ,φ|V |+|U |}. We extend the edge set of G f to include edges (vi,φk) be-

tween all pairs of dummy vertices φk and vertices vi. We similarly extend the vertex and edge

29
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set of Gg and represent its dummy vertices by ψ . The attributes of the dummy vertices and

edges are set to 0. We denote a mapping between vertex vi and u j as vi 7→ u j. As the vertex

mapping induces a map on the edges, we denote edges that correspond as (vi,v j) 7→ (uk,ul).

A map F : V →U , is called ρ-valid for ρ ∈ [0,1] and denoted by Fρ if it is bijective and

the edge distortion of corresponding edges is bounded by ρ . As we extend both vertex sets to

contain |V |+ |U | vertices, bijective maps can be found for all values of ρ . Given a valid map

Fρ , We measure the vertex distortion between individual maximum that have been mapped.

We denote the vertex distortion under a map Fρ by dV
Fρ

with dV
Fρ
(vi 7→ u j) = |P(vi)−P(u j)|

As the attribute associated with a dummy vertex is 0, correspondences involving a dummy

vertex, i.e., vi 7→ ψ j, implies simplification of the vertex vi and its vertex distortion is equal

to its persistence. Similarly, we denote the edge distortion by dE
Fρ

and it is bounded by ρ

by definition, dE
Fρ
((vi,v j) 7→ (uk,ul)) = |C((vi,v j))−C((uk,ul))| ≤ ρ . We assume the edge

distortion involving a dummy edge is 0. Figure 5.1(a) and (b) describes valid maps for ρ = 0.25

and ρ = 0.45 respectively.

5.2 Distance between extremum graphs

The individual distortions of the vertices and edges is used to compute the maximum distor-

tion of the vertex set and edge set, which is in turn used to compute a distance between the

two graphs. We define a distance DV
Fρ
(V,U) between the vertex sets and DE

Fρ
(Eu,Ev) between

the edge sets of the complete graphs based on the maximum distortion introduced by the map

Fρ . The distance between the vertex sets is indicative of the quality of the correspondence

between the features of functions being compared in terms of their persistence. The distance

between the edge sets indicates how well the proximity relationship between pairs of extrema

are preserved.

DV
Fρ
(G f ,Gg) = maxv∈V dV

Fρ
(v 7→ F(v))

DE
Fρ
(G f ,Gg) = max(vi,v j)∈E dE

Fρ
((vi,v j) 7→ (F(vi),F(v j))
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(a) A valid map for ρ = 0.45 is shown above.
Dummy vertices are inserted into each graph
to obtain a bijective map. Edges are labelled
with their corresponding edge cost. Cor-
respondences that involve a dummy vertex
are indicated with dotted edges. The ver-
tex distortion for this map can now be com-
puted based on the difference in the vertex
attributes of the corresponding vertices.
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(b) For ρ = 0.25, the figure shows a possible
map between the two complete extremum
graphs. The correspondence A 7→ 0 and C 7→
2 satisfies the ρ criterion since |C((A,C))−
C((0,2))| = |0.35− 0.10| ≤ 0.25. The cor-
respondence B 7→ 1 cannot be included since
(A,B) and (0,1) cannot be mapped within
a distortion of 0.25 though (B,C) and (1,2)
satisfy the condition.
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(c) Any valid map appears as a maximal clique in the product graph. Here, the map shown for ρ = 0.45
in figure 5.1b is shown in the (partial) product graph. It appears as maximal clique. An edge between
vertex A|0 and B|2 is included in the product graph since the edge costs of edges (A,B) and (0,2) have
a difference ≤ ρ . The vertices representing dummy correspondences(*) ensure that all extrema appear
in the map and the valid map is always maximal. Note that introducing one dummy vertex for each
extremum graph is sufficient to compute the appropriate product graph.

Figure 5.1: Examples of valid ρ-maps and product graphs
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Each map gives an estimate on the distance between the two graphs G f and Gg that mea-

sures the distortion in the graph induced by that map. The estimate is the sum of the vertex

distance and the edge distance implied by the map. For a fixed ρ , the minimum over all possi-

ble maps gives an estimate distance between extremum graphs, Dρ .

DG
Fρ
(G f ,Gg) = DV

Fρ
(G f ,Gg)+DE

Fρ
(G f ,Gg)

Dρ(EG f ,EGg) = Dρ(G f ,Gg) = min{DG
F (G f ,Gg)|F is ρ-valid }

To compute the distance between the extremum graphs G f and Gg, we consider distance

estimates for all valid ρ values and assign the minimum value as the distance D(G f ,Gg)

D(EG f ,EGg) = D(G f ,Gg) = min{DG
Fρ
(G f ,Gg)|∀ρ}

5.3 Composition of Maps

Let Fρ be a ρ-valid map between complete extremum graph G f (V,Ev) and Gg(U,Eu) due to

functions f and g respectively. Let Gξ be a ξ -valid map between complete extremum graph

Gg(U,Eu) and Gh(W,Ew) due to functions g and h respectively. Consider the composition map

H = G◦F between G f (V,Ev) and Gh(W,Ew).

First, H is a ρ +ξ valid map. Let vi 6= v j and vi 7→ wm and v j 7→ wn under H due to maps

vi 7→ uk, v j 7→ ul under Fρ and uk 7→ wm and ul 7→ wn under Gξ . As Fρ and Gξ are bijec-

tive, wm 6= wn. The edge distortion introduced by H on (vi,v j) 7→ (wm,wn) = |C((vi,v j))−

C((wm,wn))|

|C((vi,v j))−C((wm,wn))| ≤ |C((vi,v j))−C((uk,ul))+C((uk,ul))−C((wm,wn))|

≤ |C((vi,v j))−C((uk,ul))|+ |C((uk,ul))−C((wm,wn))|

≤ ρ +ξ

As edge distortions introduced by H is bounded by ρ + ξ , H is a ρ + ξ valid map. The

distortion induced by Hρ+ξ on the vertex vi is bounded by the distortions induced by Fρ on vi

and Gξ on u j.



5.4. Metric Properties 33

dV
Hρ+ξ

(vi 7→ wk) = |P(vi)−P(wk)|

= |P(vi)−P(u j)+P(u j)−P(wk)|

≤ |P(vi)−P(u j)|+ |P(u j)−P(wk)|

= dV
Fρ
(vi 7→ u j)+dV

Gξ
(u j 7→ wk)

5.4 Metric Properties

We now verify that our distance measure D(G f ,Gg) satisfies properties of a metric.

1. D(G f ,Gg)≥ 0. By definition, as all vertex and edge distortions are non-negative, this is

true.

2. D(G f ,Gg) = 0⇔G f = Gg. We first prove the implication in the forward direction, As-

suming all extrema have strictly positive persistence, to achieve a distance 0, all dummy

vertices of G f should map to dummy vertices in Gg. All non-dummy vertices should

map to a corresponding non-dummy vertices that have identical persistence giving zero

distortion. If the edge costs are not identical between the graphs, all vertices can only be

mapped under a ρ > 0. Since the distance is 0, both the edges and vertices have identical

attributes leading to G f = Gg.

The implication in the other direction follows from the fact that an identity map F0 :

V → V with ρ = 0 assigns a distance of 0, which is the minimum distance that can be

attained. Hence, D(G f ,Gg) = 0.

3. D(G f ,Gg)=D(Gg,G f ). By definition of the vertex and edge distances, D is a symmetric

measure. For a map F that attains minimum distortion between G f and Gg, F−1 attains

the same distortion between Gg and G f .

4. D(G f ,Gg)+D(Gg,Gw)≥ D(G f ,Gw). From the composition of maps and bounded dis-

tortion of individual vertices and edges, the triangular inequality holds.
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5.5 Computation

By definition, to compute the distance Dρ between two complete extremum graphs, one re-

quires a ρ-valid map between the extrema that introduces minimum distortion. One way to

encode all valid maps is by considering a product graph. Let the two graphs to be compared be

G f (V ′,Ev) and Gg(U ′,Eu). We extend the vertex and edge set as described in the map compu-

tation and denote the extended vertex sets as V and U respectively, with |V |= |U |= |V ′|+ |U ′|.

The product graph P(V ×U,E) contains |V | × |U | vertices of the form p<vi,u j>. Vertex p

indicates a possible correspondence between its factor vertices vi and u j. The weight of a ver-

tex is defined as w(p<vi,u j>) = 1− d(vi 7→ u j) = 1−|P(vi)−P(u j)|. In practice, we only

require |V ′|+ |U ′| vertices in the product graph for identifying vertices that will be simplified.

So, inserting one dummy vertex to each extremum graph and manipulating weights and edges

is sufficient for computation.

We use the validity constraints to introduce edges in the product graph. An edge exists

between vertex p1<vi,u j> and p2<vk,ul> if vi 6= vk , u j 6= ul and |C((vi,vk))−C((u j,ul))| ≤

ρ . Any ρ−valid map is now represented by a maximal clique in the product graph. We define

the weight of a maximal clique to be the minimum weight of any vertex it contains. Note that

since the cliques are maximal, trivial cliques are avoided. In practice, when we are interested

in determining the actual correspondence as opposed to just the distance, the weight of a clique

can be defined as the sum of its vertex weights.

An optimum map that minimizes the distortion between G f and Gg is now a maximum

weight clique in the product graph. The vertices of the maximum clique provide the corre-

spondence of the optimum map.

To compute the distance between two graphs with n and m vertices respectively, we need

to consider O(n2m2) ρ values. However, often applications may require that proximity be

maintained strongly by the resulting maps. In such cases, we only compute distances for a

few small values of ρ . We also minimize the number of ρ values tested by plotting all values

and only considering values that significantly differ. These can be identified by peaks in the

difference plot.

To compute the optimum correspondence map and thereby distance Dρ(G f ,Gg), we can
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enumerate all maximal cliques in P and identify the maximum weight clique K∗ [5]. While

we use the Bron-Kerbosch algorithm to enumerate cliques, any weighted maximum clique

enumeration algorithm can be used to compute the optimum map. Enumerating cliques has

exponential time complexity and is feasible for only small graphs. We discuss some generic

pruning strategies to sparsify product graphs and some approaches to partition extremum prod-

uct graphs in order to reduce the search space.

5.5.1 Pruning

We prune the product graph to remove vertices and edges that cannot be a part of any maximum

weight clique. The weight of any maximal clique is a lower bound on the weight of the

maximum clique, W∗, in P. We compute a lower bound, Wlb, for W∗ by computing a greedy

clique. We order the vertices of P based on their weights and degrees i.e., deg(p<v,u>) ·

w(p<v,u>) and iteratively pick the next vertex that satisfies clique conditions.

P is a product graph and each maximal clique computes a correspondence that respects

edge constraints defined by the parameter ρ . We can adapt the maximum weight bipartite

matching to compute a bottleneck distance [18], that gives an optimum correspondence when

no pairwise constraints are imposed by ρ . Hence, this cost, Wub, on the set of factor vertices,

is an upper bound for W∗.

Now, for each edge in the product graph, we compute an upper bound on the weight of

a maximum clique that contains this edge. Let N(x) represent the neighbours of a vertex

x<v,u> in the product graph and W (S) be the weight of the maximum clique restricted to a

set of vertices S ∈ V ×U . Let Wub(S) be the maximum bipartite matching cost between the

factored vertices of S. Any maximal clique containing edge (x,y) is entirely contained in the

intersection of their neighbourhoods by definition of a clique. Therefore, W (N(x)∩N(y)) ≤

Wub(N(x)∩N(y)).

To decide if the edge (x,y) can be a part of some maximum weight clique, we compute

an upper bound on the weight of any maximal clique containing this edge and compare it

against the weight of the greedily computed clique i.e. W (x)+W (y)+Wub(N(x)∩N(y))<Wlb

implies that the weight of any maximal clique containing the edge (x,y) does not exceed the
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Figure 5.2: A partial product graph. Let the vertices highlighted in violet be the greedy max-
imal clique. We prune an edge if it cannot be a part of any maximal clique with a weight
greater than the current maximum weight clique. Consider the edge <D,C>. Any maximal
clique that contains this edge lies in the intersection N(D) and N(C), indicated here by or-
ange edges. By considering the factor vertices represented by these vertices and the possible
matchings represented by these edges, we can compute a maximum bipartite matching. The
cost derived from this matching gives an upper bound on any clique that contains <D,C>.
If this is lesser than the weight of the greedy clique, this edge can be safely pruned.

lower bound. Therefore, pruning the edge (x,y) from P does not affect the maximum weight

clique. Once edges have been pruned, vertices can also be pruned in a similar fashion. A

vertex x<v,u> is pruned if W (x) +Wub(N(x)) < Wlb. Figure 5.2 illustrates edge pruning

using bipartite matching in a product graph.

Further, based on the application, vertices and edges can be additionally pruned using

geometric information and constraints. An edge in the product graph refers to a pair of vertices

in each complete extremum graph. If these vertices are expected to maintain similar geodesic

or euclidean distance between them, the edges of the product graph may be pruned based on

such properties.
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Figure 5.3: Partition thresholds for two time steps of the vortex flow data. Identified thresh-
olds are marked on the difference plot. The thresholds partition vertices into sets of similar
persistence values.

5.5.2 Partitioning

While pruning helps in reducing the number of edges and vertices in the product graph, direct

construction of the maximum clique remains impractical. We leverage the fact that the im-

portance of a feature is captured by the persistence of maxima, to partition the product graph

and process the partitions in an importance-aware manner. The maximum weight clique is

constructed incrementally by restricting the computation to a growing subset of the product

graph.

We order the factored vertices in the increasing order of their persistence values, P . To

identify threshold values that denote a relatively significant change in persistence between

vertices, we plot the difference between the persistence of the ordered vertices,P(i+1)−P(i).

A peak in this difference plot indicates a significant change in the persistence values and we

identify the persistence associated with these points as thresholds. We restrict thresholds to

have a minimum separation of 1% of the function range. Figure 5.3 shows thresholds identified

for two time steps in the vortex flow dataset.

After identifying a set of thresholds T{t0 > t1 > · · · > tn}, we partition the vertex set of

the product graph based on it. We denote the partially computed maximum clique as a set of

vertices K. At each iteration i, we consider only those vertices p<vi,u j>, whose minimum

persistence value min{P(vi),P(u j)} is at least ti. We consider the graph induced by these
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vertices and enumerate the maximum clique for it. Vertices that indicate a correspondence

between non-dummy vertices are added to K. We now prune the product graph by eliminating

vertices that are not adjacent to all the vertices in K. Vertices that indicate a dummy correspon-

dence are included in the next iteration along with vertices that satisfy the next threshold. In

the last iteration, we include all dummy correspondences also in K. Figure 6.5 plots the benefit

of pruning and partitioning for the applications discussed in the next chapter.
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Applications
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0
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Figure 6.1: The line plot shows distance between the maximum graphs computed between
consecutive time steps for a synthetic time-varying dataset. The distance plot helps in summa-
rizing the dataset, peaks in the plot indicate frames that have a large distance with respect to
the previous time step, indicating an event of importance. For example, the peak at time step
24 occurs due to the creation of a new feature visible in the bottom right corner.

Simulations that are time dependent or phenomena that are recorded over a large time

frame are available as a series of scalar fields and are referred to as time varying data. For

example, computational fluid dynamic simulation often observe the behaviour of fluids over

time, generating time varying data. Climate experts may simulate or record data such as hourly

wind speed during a hurricane period, generating a large series of scalar fields.

39
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Time varying data are often available for a large time period due to the nature of the pysical

phenomenon or a high resolution simulation. Visualizing the data frame by frame is tedious.

Distance measures can be used to provide an overview or summary of the entire sequence of

time varying data. This can help in identifying frames of significant activity, series of time

steps that are stable, and other interesting patterns such as periodicity in the data. Further,

correspondence based distance measures such as the proposed distance between extremum

graphs, also facilitate tracking features across time steps.

Figure 6.1 shows a one dimensional summary plot for a synthetic time varying dataset. In

this data, blobs or features are created at various time steps, these features merge by moving

towards each other in subsequent time steps. The plot has been generated by computing the

distance between maximum graphs for consecutive time steps of the data. Peaks in the plot

refer to a pair of time steps that show significantly higher distance, they indicate time steps

that involve creation or merger of features. Peaks at time step 24, 32 and, 54 appear due to

creation of new extrema. Over time, these features merge and this event can be seen as peaks

at time step 96 and 98. Such plots help in providing a quick overview of the data.

We now discuss some applications of our distance measure to a few time varying datasets

that validate and illustrate its usefulness.

6.1 Periodicity in Time-Varying Data

Identification of periodicity in a time-dependent data is critical to understanding the underlying

phenomenon and validating simulations. Figure 6.2 shows a few time steps of a synthetic fluid

simulation of flow around a cylinder1 that exhibits periodic vortex shedding [43]. The flow

has been simulated for 1000 time steps and is available as 400×50 uniform two-dimensional

grids. The magnitude of the two dimensional vector field is represented using a color map.

The maximum graph is overlayed in yellow. The figure shows the Bénard–von Kárman vortex

street formed by the flow.

1This data set has been simulated by Tino Weinkauf [42] using the Free Software Gerris Flow Solver [31] and
is available from http://people.mpi-inf.mpg.de/ weinkauf/notes/cylinder2d.html.
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Figure 6.2: Time-step 0 (top), 38 (middle) and 75 (bottom) of the flow around a cylinder
simulation. This simulation is time dependent with a time period of 75, these time steps appear
similar. The vortex shedding alternates between the two sides of cylinder with a time period of
38. Time step 38 appears symmetric to time step 0 and 75. Maxima are shown as red spheres
and the maximum graph is overlayed in yellow.

To verify that our distance function indeed identifies the known periodicity in this data [34],

we compare each time step with all other time steps of the dataset. To ensure that edge con-

straints are strictly enforced, we use a low ρ = 0.001 across all comparisons. Figure 6.3 shows

the vertex distortion plots for a few time steps. Each time step is compared against all time

steps. It is easy to observe from the distance plot that the simulation is periodic. The time

period of this simulation is known to be 75, the plot however indicates a time period of 38.

This is due to the alternating nature of vortex shedding from the two sides of the cylinder as

shown in Figure 6.2. Since the distance measure is over the extremum graph, the symmetric

nature of these oscillations are identified.

Figure 6.5 shows that a speed up of ∼ 2.5× is achieved by pruning edges and nodes in the

product graph for this dataset. Graph details and running times are listed in Table 6.6.

6.2 Correspondence and Tracking of Features

When data is time-varying, one is often interested in tracking features identified in one time-

step, across all other time-steps. The ability to perform such tracking greatly aids in visualizing
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Figure 6.3: To identify periodicity, we compare the extremum graph of each time step with all
1000 time steps of the data. The line plot above shows distances computed between time step
0 and time steps 0-1000. The time steps are indicated on the x-axis and distance is indicated
on the y-axis. The plot below shows distances computed with respect to time step 22, 38, 58
and 75. From both plots, a time period of 38 can be identified.

the features of a dataset. In this example, we show that the correspondences found based on

the complete extremum graph are intuitive and use them to track features across time steps in

a pseudospectral simulation of coherent turbulent vortex structures2. The volume data set has

1283 resolution and has been simulated for 100 time steps.

The features in this data are the vortex cores that can be represented by isosurfaces with

isovalues greater than ∼ 50% of the maximum magnitude of the data, in each time step [37].

However, these features can merge or split in successive time steps. An important aspect of

feature tracking is to identify these split and merge events across time steps. In order to track

these features, we compute a correspondence between the maximum graphs of adjacent time

steps. The correspondence is obtained by the map that generates the optimum distance between

2http://vis.cs.ucdavis.edu/TVDR/Vortex/
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Figure 6.4: To track features in the turbulent vortex data, we compare the complete extremum
graphs of consecutive time steps. Tracked features across time steps 2, 4 and 6 are shown on
the left. Low opacity values indicate higher structural distortion in the complete extremum
graph. Three features are shown in isolation on the right, the violet feature undergoes a split.
The green and brown features merge, the purple feature grows.
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the two graphs. We propogate the correspondence by transitivity across all time steps. To map

correspondence established between the maxima to the isosurfaces representing the vortex

cores, we label the isosurfaces based on the maxima whose descending manifolds they lie in.

The complete graph structure allows us to compare features irrespective of instabilities in

the merging order of the extrema or geometric overlap in the features. Figure 6.4 shows the

isosurfaces for the first few time steps of the dataset. Isosurfaces are colored based on the

correspondence obtained from the extremum graph. Surfaces that have the same color lie in

descending manifolds of maxima that are in correspondence. The complete extremum graph

implicitly handles merging and splitting of the extrema features. Figure 6.4 (right) shows three

features in isolation from time steps 2 and 7. The violet feature splits into two. The green and

brown features merge and the purple feature grows. To label a feature that corresponded to a

dummy vertex, as in the case when a feature splits, we adopt the label of its parent feature in

the persistence based simplification.

As the goal here is to compute correspondences and track as many features possible, we

compute correspondences at various ρ levels. We identify these ρ values based on the peaks

in the difference plot of the edge costs. The lowest ρ value at which a feature is tracked is

mapped inversely to its opacity, indicating the extent to which the graph structure with respect

to that feature is similar across time steps. Note, the violet feature in the bottom and the yellow

feature in the center of the tracked frames in Figure 6.4, these features undergo merges and

splits and their transparency indicates that the variation in their edge structure is relatively

higher as compared to other features.

To speed up clique computation, we consider only vertices with persistence > 10% of the

function range and prune possible correspondences based on the moments of the descending

manifold [22]. We compute the maximum clique hierarchically. Figure 6.5 shows the variation

in the distance due to hierarchical clique computation. The maximum difference observed

between the optimal clique and the hierarchically computed clique is less than 10%, typically

the distance is much smaller. Graph details and running times are listed in Table 6.6.
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ing in computing the maximum clique for
the flow behind a cylinder dataset. We prune
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(b) This plot shows the variation in the dis-
tance computed for the vortex dataset with
and without applying partitioning heuristics.
For large datasets, where direct clique com-
putation is computationally infeasible, par-
titioning allows us to compute the clique in
a hierarchical fashion. The maximum dif-
ference observed between the optimal clique
and the hierarchically computed clique for
this dataset is ≤ 10% and typically much
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Figure 6.5: Effect of pruning strategies on clique computation time and partitioning on dis-
tances computed.

Dataset Size # Ext
CEG
Time

#Ext
after
simp

# vertices
product
graph

#edges
product
graph

Product
Graph
Time

Clique
Time

Flow
around
cylinder

400×50 ∼35 <1 ∼35 ∼900 ∼300K <5 ∼10

Vortex 1283 ∼1000 ∼70 ∼60 ∼2000 ∼1500K ∼30 ∼50

Figure 6.6: Running time(in seconds) and graph details for distance computations. Experi-
ments were performed on a 2GHz Intel Xeon processor with 16GB RAM. ‘Ext after simp’
indicates the number of extrema considered for computing the distance. Note that the com-
plete extremum graph (CEG) is computed using all unsimplified extrema, in order to compute
correct edge costs. Pruning and partitioning techniques have been used to speed up the clique
computations.
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Chapter 7

Conclusions

In this thesis we presented a distance measure to compute the similarity between scalar fields

using extremum graphs. We showcased the applicability of this distance in understanding time

varying datasets. We introduced a complete extremum graph structure that captures distances

between all pairs of extrema and computed maximum weight common subgraphs to determine

the similarity between fields.

Graph based distances are typically hard to compute and have exponential complexity in

the worst case. We discussed pruning and partitioning strategies to effectively compute the

distance measure. The pruning strategies are applicable to any product graph. Our partitioning

strategy can be viewed as hierarchical matching, that performs matching at a coarser segmen-

tation and then matches finer segments. Hence, if a large number of features of interest appear

at the same scale, partitioning may fail to provide a good approximation of the distance. Fur-

ther, the distance computation is not real time. Other strategies and heuristics based on the

extremum graph structure to improve computational aspects can be further worked upon.

The distance between the extremum graph is based on the distance between the edge sets

and the vertex sets of the complete graph. We used application specific schemes to identify

the edge distances or ρ values. As ρ values increase, the vertex distance decreases. These

properties can be used to prune candidate ρ values. However, in general, one may have to

compute vertex distance for all values to find the true distance. For extremum graphs with n

vertices, there can be O(n4) candidates. A general approach to efficiently compute optimal

47
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values needs further investigation.

Apart from the distance between extremum graphs, the complete extremum graph struc-

ture is an interesting abstraction on its own. It provides a way of relating all pairs of ex-

trema based on function perturbation. It would be interesting to see if this information can

be effectively employed in other similarity measures that are easier to compute, such as shape

distribution [29], to understand scalar fields.

Finally, the complete extremum graph is designed to mitigate the effects of instabilities due

to binary choices that are inherent in simplification based approaches. Also, the separation of

vertex and edge distances allows the user to vary the influence of proximity on the correspon-

dence. However, the stability and the discriminative aspects of this distance measure needs to

be analyzed further.
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