
Topological Saliency

Harish Doraiswamya, Nithin Shivashankarb, Vijay Natarajanb,c, Yusu Wangd

aDepartment of Computer Science and Engineering, Polytechnic Institute of New York University, USA
bDepartment of Computer Science and Automation, Indian Institute of Science, Bangalore, India

cSupercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
d Department of Computer Science and Engineering, The Ohio State University, USA

Abstract

Topological methods have been successfully used to identify features in scalar fields and to measure their importance. In this paper,
we define a notion of topological saliency that captures the relative importance of a topological feature with respect to other features
in its local neighborhood. Features are identified by extreme points of an input scalar field, and their importance measured by the
so-called topological persistence. Computing the topological saliency of all features for varying neighborhood sizes results in a
saliency plot that serves as a summary of relative importance of all topological features. We develop a convenient tool for users to
interactively select and inspect features using the saliency plot. We demonstrate the use of topological saliency together with the
rich information encoded in the saliency plot in several applications, including key feature identification, scalar field simplification,
and feature clustering.
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1. Introduction

The use of topological methods is becoming popular for
analyzing, visualizing, and exploring scalar fields. It is be-
ing used for a wide range of applications including topologi-
cal simplification and cleaning [1, 2, 3, 4], surface segmenta-
tion and parametrization [5, 6, 7], topology based shape match-
ing [8, 9], and designing transfer functions for volume render-
ing [10, 11, 12, 13]. Distinguishing between significant and
unimportant features of the input forms an integral part of the
methodologies used in these applications. In this paper we fo-
cus on this theme to define a notion of saliency for topological
features and explore its application to visual analysis of fea-
tures.

1.1. Related work
Features in scalar fields are represented by critical points of

the field. A common approach to identifying features in 3D
geometric models is to first design a descriptor function that
captures important information about the input and use criti-
cal points of such a descriptor function as representatives of
features. Various methods have been proposed to produce a
meaningful descriptor function. Once a descriptor function is
given, one can measure the topological importance of the fea-
tures (critical points) associated with it based on the so-called
persistence homology, originally proposed by Edelsbrunner et
al. [1]. Indeed, topological persistence has been demonstrated
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to be an effective importance measure and has been used for
many applications, including scalar field simplification [14, 15]
and shape matching [8]. While the notion of persistence can
effectively describe the importance of a feature with respect to
an input scalar function or filtration, it is somewhat oblivious
to other geometric information not encoded in the input func-
tion. In particular, it does not reflect how important a feature is
relative to other features in its neighborhood.

In this paper, we aim to initiate a study in this direction by
defining a notion of topological saliency for features in the in-
put that captures the relative importance of a feature within a
spatial neighborhood. We propose to do this following an ap-
proach similar to saliency models used in image and geometric
mesh analysis. Many models for obtaining salient locations in
images have been proposed [16, 17, 18, 19, 20]. In particular,
Itti et al. [19] propose a model that computes the saliency of a
pixel in an image based on the properties of pixels in its neigh-
borhood. Lee et al. [21] extend this model to geometric features
and propose a notion of mesh saliency that captures the saliency
of a point in a surface or volume mesh. It is computed as the
curvature at a point weighted by the average curvature within a
small neighborhood.

Our topological saliency framework can be viewed as a way
to combine geometry information with topological methods.
Note that this measure is not intended to replace existing global
importance measures. Rather, we expect it to complement ex-
isting measures when applied to the visual analysis of features.

We remark that the theme of combining geometry and topol-
ogy is not new. For example, Carr et al. [22] employed geomet-
ric measures computed on contour trees to find and simplify
less significant features. Weber et al. [12] used Reeb graphs to
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Figure 1: (a) A sample terrain with seven peaks. Traditional topological methods identify peaks A, B, C, D and E as important. Even though peak F remains a lone
peak for a significantly large part of the domain, it is not considered to be important. (b) Volume rendering of a breast data set. The tumor, highlighted in cyan,
corresponds to a low persistent feature in the input.

identify significant features in volumetric data in order to de-
sign transfer functions for rendering the volume. The concept
of topological landscapes [23, 24] provides an intuitive view of
the data by displaying its topological features, abstracted by the
contour tree, as a terrain. In Agarwal et al. [25], the authors aim
to use a descriptor function to encode certain geometric infor-
mation of interest, and use topological persistence to identify
geometric features from this function. The concept of “local-
ized homology” was later proposed by computing the homol-
ogy from local pieces to global pieces, so that the generators
of homology classes are localized in local pieces [26]. Rein-
inghaus et al. [27] proposed an importance measure for critical
points in two dimensional scalar fields called the scale space
persistence, which combines the notion of deep structure of the
scale space with topological persistence. The scale space per-
sistence is computed by accumulating the persistence values of
a critical point through its evolution in the scale space [28].

1.2. Motivating example

Consider the terrain shown in Figure 1(a) with seven peaks.
Existing topology-based methods would ignore peak F even
though it dominates a large area of the domain in the sense
that it remains an important feature within a large neighborhood
size. Similarly, based on persistence, peaks B and D would have
been declared as equally important even though D is surrounded
by other peaks of similar height making it not as dominant as
B. In general, spatial distribution of topological features has
not been considered while measuring the size of a feature and
its significance.

Such scenarios are common when studying medical data ob-
tained using diffuse optimal tomography. For example, Fig-
ure 1(b) shows a volume rendering of a breast dataset having a
tumor. The high persistent features in the input corresponds to
the fibre bundles on the periphery of the volume, shown in yel-
low. However, the tumor corresponds to a low persistent feature
that is isolated within the volume. Therefore, using persistence

alone, it may not be possible to identify the tumor as a signifi-
cant feature of the input.

1.3. Results
We address the problem raised in the above example by

defining a notion of topological saliency that considers the pres-
ence or absence of other features within the neighborhood while
measuring the importance of a topological feature. A feature in
this paper is always represented by an extremum (minimum or
maximum) of the input scalar field. The topological saliency
of a feature is computed as a weighted average of the topolog-
ical persistence of features within its local neighborhood. We
also introduce a saliency plot that is generated by computing
the topological saliency of all features for varying neighbor-
hood sizes. This plot can be considered as an augmentation or
refinement of persistence, obtained by injecting certain spatial
geometry information into it. We also propose the use of topo-
logical saliency for simplifying the input in order to remove
noise.

Further, we develop visualization software to facilitate the
use of the saliency plot. In particular, the software can compute
the saliency plots of minima and maxima for a given input field
as well as a decomposition of the input domain around these
features. It also allows the users to interactively select and in-
spect features of the input using the saliency plot. Finally, we
demonstrate the use of this software and the concept of topo-
logical saliency in the following applications.

• Identify key features that may be missed by standard per-
sistence. In particular, we use topological saliency to iden-
tify breast tumors.

• Identify craters on Mars. We use topological saliency in
conjunction with standard persistence to identify signifi-
cant craters on the surface of Mars.

• Extract similar features. We use the topological saliency
plot to identify and group similar features of the input.
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2. Background

We briefly introduce some necessary notations and refer the
readers to appropriate textbooks [29, 30, 31] for more precise
definitions and comprehensive discussions of these concepts.

2.1. Morse function
Let M denote a d-manifold with or without boundary. Given

a smooth, real-valued function f : M→ R defined on M, the
critical points of f are exactly where the gradient becomes zero.
The function f is called a Morse function if it satisfies the fol-
lowing conditions [32]:

1. All critical points of f are non-degenerate and lie in the
interior of M.

2. All critical points of the restriction of f to the boundary of
M are non-degenerate.

3. All critical values are distinct i.e., f (p) , f (q) for all crit-
ical points p , q.

In the remaining discussion, we assume that the scalar func-
tion defined on our input is a Morse function. In case the
above conditions do not hold, simulated perturbation of the
function [33, Section 1.4] ensures that no two critical values
are equal. For a Morse function f defined on a d-manifold M,
there are d+1 types of critical points indexed from 0 to d. The
two most familiar types are minimum (with index 0) and maxi-
mum (with index d), corresponding to a point p whose function
value is smaller, or larger, than all other points within a suffi-
ciently small neighborhood of p, respectively.

2.2. Topological persistence
Given a Morse function f : M → R, the topological per-

sistence algorithm sweeps the manifold M in increasing order
of function value1, and inspects the changes in the homology
groups of the sublevel set M(−∞,α] := {x ∈ M | f (x) ≤ α},
which only happens when the sweep passes a critical point of f .
In particular, at a critical point, either new topology is generated
or some topology is destroyed, where topology is quantified by
a class of ‘cycles’. For example, a 0-dimensional cycle repre-
sents a connected component, a 1-dimensional cycle is a loop
that represents a tunnel, and a 2-dimensional cycle bounds a
void. A critical point is a creator if new topology appears and
a destroyer otherwise. It turns out that one can pair up each
creator v1 uniquely with a destroyer v2 that destroys the topol-
ogy created at v1. The persistence value of v1 and v2 is defined
as f (v2)− f (v1), which intuitively indicates the lifetime of the
feature created at v1, and thus the importance of v1 and v2.

In this paper, we only consider extreme points of the in-
put function as features. Given an input domain of size n,
the persistence of such features can be computed efficiently in
O(n logn+nα(n)) time using the union-find data structure, ver-
sus the usual cubic-time algorithm to compute general topolog-
ical persistence [1, 34].

1The persistence algorithm works for more general topological spaces than
manifolds. We only describe the case when it is induced by a function defined
on a manifold.

3. Topological Saliency

In this section we describe the notion of topological saliency,
which combines the topological persistence of a feature with its
neighborhood information, and discuss applications.

3.1. Definition
Let the set C = {c1,c2, . . . ,ct} be the set of minima of the

input function f : M→ R. Let P(i) denote the persistence of
the topological feature created at ci. Let dg(p,q) denote the
geodesic distance between two points p,q ∈ M. Consider a
r-neighborhood Nr(i) = {x ∈M | dg(x,ci) ≤ r}, which is the
geodesic ball of radius r centered at critical point ci. We define
the topological saliency Tr(i) of the feature created at ci as

Tr(i) =
ω i

i P(i)

∑
c j∈C

ω
i
jP( j)

,

where ω i
j is a weighting function for the feature j with respect

to i. The topological saliency at a maximum is defined in a sym-
metric manner. Two common choices of the weighting function
are (a) uniform weight:

ω
i
j = 1 if c j ∈ Nr(i)

= 0 otherwise

and (b) Gaussian weight:

ω
i
j = e−

dg(ci ,c j)
2

r2

The topological saliency of a topological feature essentially
normalizes the persistence of that feature based on the features
that are present in its neighborhood. A Gaussian weighting
function reduces the influence of farther features, while a uni-
form weighting function treats all features within the neighbor-
hood equally.

Due to the discontinuous nature of the definition of topologi-
cal saliency when using uniform weights, a small change in the
location of a critical point (due to noise) could notably effect
the saliency of itself, as well as that of other features. How-
ever, such changes do no have a significant impact when using
Gaussian weights. This is because topological saliency changes
continuously with varying neighborhood sizes. We have imple-
mented both weighting schemes in our software. Unless other-
wise mentioned, we use Gaussian weights for all experiments
reported in this paper.

Note that when computing the topological saliency of a mini-
mum (resp. a maximum), we only consider features of the same
type, i.e., other minima (resp. maxima) in its neighborhood.
Intuitively, critical points of different indices capture different
types of features: a minimum captures a valley while a maxi-
mum captures a mountain peak. We also remark that one could
extend the topological saliency to critical points of other indices
(i.e, various saddle points). An index-k saddle point indicates
the formation of a k-cycle. However, the meaning of a neigh-
borhood of such features become less clear, and we leave the
definition of salient index-k features for future work.
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Figure 2: The topological saliency plot of the terrain data. Features in the
input and the corresponding curve plots are highlighted using a common color.
Note that the green colored peak F , which has low persistence, maintains a
topological saliency close to 1 for up to a large value of neighborhood size.

3.2. Topological saliency plot

Consider the neighborhood of a feature ci when r = 0. It con-
sists of just the critical point ci. Its topological saliency T0(i)
equals 1. As we increase the neighborhood size r, Tr(i) remains
close to 1 until Nr(i) includes another feature represented by,
say c j. At this point, the value of Tr(i) reduces depending on
the value of P( j). Note that, at this value of r, Tr( j) also de-
creases simultaneously. We can continue increasing r until it
equals the diameter D of the input domain M, at which point
ND(i) covers M. Plotting the values of Tr(i) for all features
from r = 0 to D, we obtain a topological saliency plot. Figure 2
shows the topological saliency plot for maxima in the terrain
data from Figure 1(a).

Under the uniform weighting scheme, when r equals the di-
ameter D of the input domain M, the topological saliency TD(i)
of ci is equal to the standard persistence P(i) scaled down by
the total persistence ∑i P(i). Hence, by varying the parameter
r from 0 to D, we move from a local perspective of the feature
to its global perspective. One can recover the traditional persis-
tence of a feature by looking at the corresponding value of TD.

3.3. Significant features

The topological saliency plot can be used to identify signifi-
cant features in multiple ways. In this paper, we use topological
saliency defined for a fixed neighborhood size r as a measure to
order features. Applying this alternative notion of importance
to the terrain dataset for the value of r shown in Figure 2, the
features are ordered as follows: F , B, A, C, E, D and G. This
notion helps resolve our problem of identifying the green peak
F in this input as being most significant. Note that the brown
peak G is not considered to be significant because of its neigh-
borhood even though its persistence is similar to F .

Ordering features based on its topological saliency requires
choosing an appropriate value of r, which is application depen-
dent. The user can compute the order at different perspectives,
from local to global, by suitably specifying the neighborhood
size r.

3.4. Saliency based simplification

Practical datasets usually contain noise, which may decrease
topological saliency of a feature for small neighborhood sizes.

This is particularly true if that feature is present within a noisy
region of the input. One way to prevent this artifact is to sim-
plify the input, and thus remove noise. Simplification based on
persistence could possibly remove salient features. For exam-
ple, if we were to simplify the terrain dataset using persistence,
then the peak F may be simplified away at a small threshold.

To address this issue, we propose a saliency based simplifi-
cation method, which uses the topological saliency at a fixed
neighborhood size r in order to simplify features. Removal of
a feature during simplification affects the saliency of the re-
maining features, and hence the saliency of these features is
recalculated. As a side effect of this simplification process, we
obtain a good segmentation from the resulting set of features.
This is attributed to the fact that features that are close to each
other merge early, as opposed to persistence based simplifica-
tion, where no spatial information is used when merging an ex-
isting feature.

3.5. Feature similarity

The saliency plot of a single feature can be considered as its
descriptor and used to find similarity between features. The be-
havior of the plots of various features also aids in studying the
relationship between features. Consider the plots correspond-
ing to similar peaks A and B, colored blue and orange, respec-
tively, in Figure 2. We observe that the two plots corresponding
to them have a similar behavior. Another observation is that,
though peaks C, D, and E have persistence similar to peaks A
and B, they differ in terms of the behavior of their correspond-
ing plots. The neighborhood of A and B are similar, in the sense
that they contain other peaks whose relative sizes are similar.
In fact, the neighborhood is similar for different sizes of r. The
same is not true for the peaks C, D, and E, and hence their plots
are different. In order to automatically capture this similarity
between features, we define the distance between two features
as the area between their corresponding plots. Two features are
said to be similar if the area between the corresponding plots
is close to zero. Note that using persistence, it is not possible
to distinguish between the features A, B, C, D, and E. In Sec-
tion 5, we show that these observations indeed hold for many
datasets.

4. Computing and Representing Features

The input to our experiments consists of piecewise linear
functions defined over simplicial meshes and piecewise trilin-
ear functions defined over structured grids. Two common topo-
logical abstractions used for representing scalar fields are the
contour tree [35], and the Morse-Smale complex [36]. They
identify the set of critical points in the input, and associate re-
gions corresponding to these critical points [37]. We use both
these data structures to identify and represent the set of features
in the input.

4.1. Contour trees

The contour tree of a scalar function tracks the evolution of
the topology of its level sets. It is computed by merging the
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Figure 3: (a) The join tree of the terrain shown in Figure 1(a). Notice that the
seven branches of the branch decomposition correspond to the seven peaks in
the input. (b) Descending manifolds of the maxima partition the terrain.

join tree and the split tree of the input [35] and represented as
a branch decomposition [38]. A join tree tracks the topology
of the super-level sets of the input function, while the split tree
tracks the topology of the sub-level sets. Since we are inter-
ested in features corresponding to only the set of maxima or
the minima, it is sufficient to compute only the join tree or the
split tree respectively. The join / split tree is computed using the
union-find data structure to keep track of the connected compo-
nents of the super-level set (or the sub-level set). This procedure
also returns the set of saddle-extremum pairs that represent the
topological features. A saddle-extremum pair corresponds to a
branch in the join (or split) tree. The set of points from the input
domain corresponding to each branch form the influence region
of the corresponding extremum. Hence the branch decompo-
sition of the join and split tree also induces a decomposition
(segmentation) of the input domain into influence regions of
features. Figure 3(a) shows the join tree for the terrain input
from Figure 1(a). Each branch of this join tree is colored using
the color of the corresponding region in Figure 2.

A simplification procedure is defined on the contour tree to
remove noise from the input. Each step of the simplification
removes the least significant leaf of the contour tree until a sim-
plification threshold is reached. This segment in the input do-
main that corresponds to the removed branch merges with the
segment corresponding to the parent branch. In all our experi-
ments, unless otherwise mentioned, we use topological saliency
as the significance measure for the simplification.

4.2. Morse-Smale complex

The Morse-Smale (MS) complex of a scalar function f parti-
tions the domain of the function based on the gradient of f . The
gradient curves of f are maximal curves on the domain whose
tangent at each point aligns with the gradient of the function at
that point. Gradient curves begin and end at critical points of
f , referred to as their source and destination respectively. The
MS complex of f partitions the domain based on the source and
destination critical point of its gradient curves. The combinato-
rial structure of the MS complex is a graph whose nodes corre-
spond to the critical points and an arc exists between two nodes
if there is a gradient curve between the corresponding critical
points and the indices of the critical points differ by one. The
descending manifold of a critical point is the set of gradient
curves that originate from it. The ascending manifold of a crit-
ical point is the set of gradient curves that terminate at it. The
ascending manifold of a minimum defines its influence region,
while the descending manifold of a maximum defines the influ-
ence region of the maximum. Figure 3(b) shows the partition of
the terrain from Figure 1(a) based on the descending manifolds
of the set of maxima.

Many algorithms to compute the MS complex have been pro-
posed in the literature [14, 36, 39, 40, 41, 42, 43]. We use an im-
plementation based on discrete Morse theory. Simplification of
a pair of critical points p,q of index i+1 and i respectively, con-
nected by a unique gradient curve is realized by locally modify-
ing the function in the neighborhood of the gradient curve [44].
After simplification, p and q are no longer critical. The change
in the combinatorial structure is realized by removing all arcs
in the graph that are incident on either p or q and inserting an
arc from every index-i critical point connected to p to every
index-i+ 1 critical point connected to q. The ascending man-
ifold of q merges with the ascending manifolds of all index-i
critical points connected to p, and the descending manifold of
p merges with the descending manifolds of all index-i+1 criti-
cal points connected to q. Arcs are scheduled for simplification
in increasing order of the topological saliency of the extremum
end point node. Arcs whose end points do not correspond to
any feature have least priority and are simplified as soon as they
appear.

4.3. Analysis

Computing the topological saliency for a given neighborhood
size r requires the computation of persistence of all features, as
well as the distances between all pairs of features. As men-
tioned in Section 2.2, computing the persistence of all features
can be accomplished in O(n logn) time, where n is the num-
ber of triangles in the input. In case of a surface mesh, com-
puting the geodesic distance between all pairs of features takes
O(tn logn) time in the worst case, where t is the number of fea-
tures. When the input is a structured grid, this can be accom-
plished in O(t2) time. The influence regions of various features
are obtained using either the contour tree or the MS-complex,
which also takes time polynomial in the size of the input.
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Figure 4: The wgauss dataset. (a) Input scalar field. The red spheres corre-
spond to the set of maxima of the input. The large number of maxima cause the
entire crest to be filled with red spheres. (b) The top 10 persistent regions. Note
that small regions (cyan, brown) on the rim of the rings closer to the center are
considered more important than the parts of the ring farther away. (c) The top
10 salient regions. Note that the regions corresponding to the ring farther away
form the center is salient, even though it has low persistence. (d) The topo-
logical saliency plot highlighting the plots corresponding to the top 10 salient
features.

4.4. Software

We first identify the set of all features in the input and com-
pute the corresponding regions in the domain. We then sim-
plify the input based on the simplification threshold provided
as input. As mentioned in Section 3.4, removal of a feature
during the simplification process required the recalculation of
the saliency of the remaining features. In order to efficiently
perform the simplification, we approximate the saliency of a
feature by considering only the weights contributed by features
within a 4r neighborhood. When a feature is removed, we only
need to update the saliency of the features that remain within
this neighborhood. Here, r is the neighborhood size at which
saliency value is calculated. Note that in practice, the contribu-
tion of the features beyond the 4r neighborhood is negligible.
Using this cut-off therefore gives a good approximation of the
saliency value while also improving the efficiency of the com-
putation.

We plot the topological saliency of the features that remain
after simplification at varying neighborhood sizes ranging from
0 to the diameter D of the input to obtain the topological
saliency plot. Each curve in the topological saliency plot maps
to the influence region of the corresponding extremum. Our
software displays the topological saliency plot along with the
input. By selecting a curve in this plot, the user can view the
corresponding region of the input. The user can order features
based on topological saliency, by specifying a neighborhood
size r. Our software also allows the user to view the various
clusters that are identified by grouping similar features based
on the topological saliency plot.

Figure 5: Effect of simplification on the saliency plot and the segmentation. (a)
100 features remaining. (b) 50 features remaining. (c) 8 features remaining. (d)
Resulting segmentation when 8 features are remaining. (e) Segmentation after
persistence-driven simplification. The outer rings merge whereas the inner ring
is over-segmented. Note that the saliency plots of the top salient regions do no
change significantly with different levels of simplification.

5. Applications

In this section, we first describe experiments on a syn-
thetic dataset that demonstrates key properties of the topolog-
ical saliency measure. Next, we describe three applications of
topological saliency – identification of significant craters on the
surface of Mars, locating breast tumors from optical tomogra-
phy data, and detecting similar features in polygonal models.
We use the height function as the scalar field for the experi-
ment on synthetic data in Section 5.1, and the average geodesic
distance (AGD) function [9] for surface meshes in Section 5.4.
The scalar field is provided as input for all volumetric data and
for the mars dataset used in Section 5.2.

5.1. Salient features of the wgauss dataset

The wgauss dataset is similar to an iso-surface of the popu-
lar Marschner-Lobb dataset [45], which is widely used to study
reconstruction / interpolation filters for volume rendering. The
dataset consists of concentric rings of crests and troughs, see
Figure 4(a). The analytic form of wgauss is given by a 2D
Gaussian distribution centered at the origin and weighted by
the cosine of the distance from the center of the grid. The
cosine term causes concentric crests and troughs whose num-
ber is controlled by the frequency. The amplitude of the crests
and troughs are modulated by the 2D Gaussian. Sampling ef-
fects results in considerable noise in terms of critical points that
are located on crests and troughs. Note that this effect exists
in high resolution grids also due to the high curvature at the
crest/trough.

We demonstrate the difference between topological saliency
and topological persistence with the aim of extracting and or-
dering the rings corresponding to crests of the wgauss dataset.
They are extracted as the influence regions of maxima, using
the branch decomposition of the contour tree. The unsimplified
input has a total of 211 maxima, most of which corresponds to
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Figure 6: The region of Mars selected as input for our experiment.

noise in the input. Therefore, there exists more than one max-
ima on each ring, see Figure 4(a). In the ideal case, at least one
maxima from a ring has to be considered important. Figure 4(b)
shows the top 8 persistent features, and Figure 4(c) shows the
top 8 salient features. Notice that the ring that is farthest away
from the center is not considered important when using persis-
tence. Instead, persistence identifies multiple maxima on rings
closer to the center as important. These maxima are similar to
the peak G in the motivating example shown in Figure 1.

Figure 5 shows the topological saliency plots at different
levels of simplification. The plots corresponding to the top 8
salient features are highlighted in Figures 5(a), 5(b) and 5(c).
Due to the use of the saliency metric as a simplification mea-
sure, the various rings are preserved during the simplification
process, see Figure 5(d). This is not true when using persistence
for simplification, since the regions corresponding to the outer-
most rings were simplified into the inner rings, see Figure 5(e).
Also, note that the saliency plots of the remaining features are
similar to the corresponding plots before simplification, indi-
cating that in practice, the saliency measure of a salient feature
is stable during simplification. This observation is true even for
the real world datasets used in the following sections.

5.2. Identifying craters on the surface of Mars

We use topological saliency together with traditional persis-
tence to identify significant craters on the surface of Mars. The
input is an elevation map of a region on Mars. This data set
was acquired by Mars Orbiter Laser Altimeter (MOLA) and is
provided by NASA [46]. In such data, the domain scientists are
interested in identifying craters, since many properties of celes-
tial bodies can be inferred using this information. The mars
data set has a resolution of 128 pixels per degree, and we chose
a 1024×1024 region that was rich with craters, see Figure 6.

Craters correspond to valleys with low elevation. We use the
set of minima in the input to represent features. The set of min-
ima and their influence regions are identified by computing the
MS complex of the input and extracting the ascending mani-
folds. We set the neighborhood size r = 50 and simplify the

(a) Topological Saliency (b) Persistence

Figure 7: Top 50 craters as identified by topological saliency and persistence in-
dicated by the black circles. Salient craters that are missed when using standard
persistence are highlighted using black arrows, while persistent craters that are
missed using saliency are highlighted using white arrows.

(a) Topological Saliency (b) Persistence

Figure 8: Top 100 craters as identified by topological saliency and persistence.
The bottom figure focuses on a small rectangular region of the input.

input until 1000 features remain. This operation removes noise
from the input. Figures 7(a) and 8(a) show the top 50 and top
100 craters, respectively, that are identified. Figures 7(b) and
8(b) show the top 50 and top 100 craters, respectively, as identi-
fied when using standard persistence. For the experiment using
persistence, the simplification of the input to remove noise was
also directed by persistence. Salient features that are missed by
persistence are highlighted using black arrows, while features
that have high persistence but are not salient are highlighted us-
ing white arrows. Note that, using topological saliency we are
not only able to identify large and shallow craters, but can also
identify small craters that are isolated. For example, consider
the craters marked as A and B in Figure 8. Figure 9 shows the
terrain corresponding to the two craters. Notice that crater B,
which corresponds to a significant crater on mars, is not con-
sidered important when using persistence. Craters missed by
our method correspond to those that are close to other high per-
sistence craters, and therefore not considered salient.
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Figure 9: Even though crater B corresponds to a significant crater on the surface
of Mars, it is not identified as significant when using traditional persistence.

(a) Topological Saliency (b) Persistence

Figure 10: Segmented regions corresponding to the identified craters. Using
saliency we obtain segments that covers entire craters. The arrows point to two
such craters.

The regions corresponding to various craters are given by the
influence regions corresponding to the minima. We use the seg-
mentation obtained after simplification (either saliency based or
persistence based), and refine the boundary of each crater using
the snakes active contour model [47]. The result of this oper-
ation is shown in Figure 10, which compares the influence re-
gions of the top salient and the top persistent craters. Note that
many craters are completely covered by the influence regions
of the set of minima when using topological saliency. As men-
tioned earlier in Section 3.4, this is attributed to the fact that
small and close-by regions get simplified and merged earlier,
thus providing a good segmentation. We observe that setting
r = 50 provides good results for this data set, while the results
may vary when changing this neighborhood size. We are cur-
rently exploring methods to automatically identify a good value
for r.

As mentioned in Section 5.1, the saliency plots and hence
the saliency values of the most salient regions do not drastically
change with simplification. To verify the same with real world
data, we repeated the above experiment by simplifying the input
containing around 19000 minima until 5000, 4000, 3000 and
2000 features, respectively, were remaining. While we noticed
a minor change in the order of the top 50 salient features, the set
of top 50 features did not significantly change. We computed
the difference between the sets of top 50 salient features com-

puted using simplification thresholds of 1000 and 5000. The
two sets differed at only three features. We observed that the
ranks of the features that were replaced, as well as that of the
new features were greater than 40. Also, their saliency values
were within 0.05 of each other, indicating that the saliency of a
salient region is stable during simplification.

5.3. Identifying breast tumors

Diffuse optical tomography is used as an adjunct imaging
modality for breast and brain imaging to provide functional im-
ages. Non-ionizing near infrared (NIR) light with wavelength
in the range of 600-1000 nm is the interrogating medium of
choice [48, 49]. Typically, the NIR light is delivered and col-
lected using fibre bundles at the boundary of tissue. These
boundary measurements are used to reconstruct the internal dis-
tributions of optical absorption and scattering coefficients. The
data is available as a tetrahedral mesh where the scattering co-
efficient at each vertex defines the input scalar function.

Figure 11(a) shows the volume rendering of two breast
data sets that have a tumor. Features are represented by the set
of maxima in the input. The branch decomposition of the join
tree of the input is used to segment the volume. The topological
saliency plots for the two data sets are shown in Figure 11(b).
The persistence of the fibre bundles at the periphery of the vol-
ume, that are used to collect data, is higher than that of the tu-
mor itself. Therefore, a persistence based ordering would iden-
tify one such fibre bundle as the most significant feature. Using
an appropriate value for neighborhood size r (10% of the diag-
onal of the volume’s bounding box for this experiment), shown
in the saliency plot, we are able to identify and isolate the re-
gion corresponding to the tumor as the most salient feature, see
Figure 11(c).

In order to test the stability of the topological saliency mea-
sure with respect to noise, we artificially induced noise in both
the input scalar field and the location of the extrema of the
breast data set. The scalar field was perturbed using a Gaus-
sian with mean equal to zero and standard deviation equal to
1% of the function range. The locations of extrema were per-
turbed using a Gaussian with mean equal to zero and standard
deviation equal to 1% of the diagonal of the volume’s bound-
ing box. We repeated the above experiment on the resulting
noisy data sets. Figure 12 shows the saliency plots correspond-
ing to data obtained by inducing different kinds of noise. Even
though the tumor has low persistence, it still remains the most
salient feature. Note that, these plots are visually similar to the
ones shown in Figure 11. The area between the curves corre-
sponding to the retained extrema before and after the addition
of noise is equal to 0.01 on an average. Note that curves in
the saliency plot are contained within a unit square (both topo-
logical saliency (y-axis) and neighborhood size (x-axis) are be-
tween 0 and 1). This value is small and essentially implies that
topological saliency is indeed stable in the presence of noise.

5.4. Extracting similar features

We group similar features by analyzing the topological
saliency plot. As mentioned in Section 3.5, we use the area
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(a) Noise added to the scalar function (b) Noise added only to the location of extrema (c) Noise added to both the scalar function, as
well as the location of the extrema

Figure 12: Stability of topological saliency in the presence of noise. Noise was added to the input scalar function, as well as the location of the extrema of the
breast dataset. Note that the saliency plots obtained for the noisy data sets are similar, and the significant feature remains the same even in the presence of noise.

between two plots as a measure of similarity between the corre-
sponding features. We then group similar features using single
linkage clustering.

Figure 13 shows three surface meshes used as input in our ex-
periments – horse, human, and memento. The AGD func-
tion defined on the mesh is used as as its shape descriptor. We
compute and plot the topological saliency for varying r. Fig-
ure 14 shows the topological saliency plot for these models.
Similar features in these models are highlighted in the figure.
The similar plots and the corresponding regions of the mesh are
represented by the same color. Segments in the model are com-
puted using the branch decomposition of the join tree. Notice
that the legs of the horse model, shown in Figure 14(a), are
grouped together in a single cluster. Ears of the horse are also
grouped together. For the humanmodel shown in Figure 14(b),
the legs and hands form groups. An interesting point to note is
that the plot corresponding to the head of the human does not
cluster together with any of the other plots signifying that it is
different from the other features. The torso and the hands of
the three humanoid figures in the memento model form two
groups, while the base of the model and the lone leg form sep-
arate groups.

As discussed in Section 3, the topological saliency plot can
be used to distinguish between features that have similar per-
sistence. For example, consider the features corresponding to
the hands and the base of the memento model. Even though
they have similar persistence, the fact that their saliency plots
differ helps distinguish between them. Figure 15, which high-
lights regions that are grouped together when using traditional
persistence, demonstrates that persistence alone is not sufficient
to distinguish between features.

Even though we perform an initial simplification in order
to remove noise, repeating the above experiment without this
simplification step does not change the set of clusters obtained.
This is because simplification only removes the features that are
not significant, and does not affect the salient features. Also,
since the behavior of the saliency plots of the salient regions

does not change, the clustering obtained remains the same. The
saliency plots corresponding to the surface meshes obtained be-
fore simplification is shown in Figure 16. Note that the cluster-
ing of the main features are preserved even after simplification.

We repeated the above experiment using the heat kernel sig-
nature (HKS) function [50] as the scalar field instead of the
AGD function. The HKS function provides a better segmenta-
tion of the features in the input. While we could again group
similar features using the saliency plot, it was still not possible
to distinguish between features using persistence.

Figure 17(a) shows a volume rendering of the silicium
and hydrogen atom datasets. The topological saliency plot
and the features that are grouped in the the silicium dataset
is shown in Figure 17(b). Notice that all the curves correspond-
ing to individual atoms have a similar behavior, and are clus-
tered together. The plots corresponding to the two spherical
lobes form a group in the hydrogen atom dataset, see Fig-
ure 17(c). Other dissimilar branches correspond to the toroidal
region and the outer envelope.

6. Conclusion

The problem of identifying important features forms an es-
sential component in many of the topological methods used for
geometry processing and scientific visualization. We address
this problem by defining a notion of topological saliency that
extends existing concepts by considering the spatial proxim-
ity of a feature to other features. Computing the topological
saliency of all features for varying neighborhood sizes results
in a topological saliency plot. We use this plot to define an or-
der on features and show its utility in identifying important fea-
tures that are possibly ignored by traditional approaches. We
also analyze this plot to group similar features and demonstrate
its application to various surface and volumetric inputs.

The measure of importance defined using topological
saliency may not be effective when the absolute size of features
is important. It also considers an isotropic neighborhood. It will
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(a)

(b)

(c)

Figure 11: Identifying tumors using topological saliency. (a) Volume rendering
of the two breast datasets. (b) The most salient feature of the dataset is
highlighted in cyan in the topological saliency plot. The plots corresponding to
the sensors are colored yellow. (c) The most salient feature corresponds to the
region containing the tumor. The volume rendering highlights the most salient
feature.

therefore be interesting to consider alternate methods of defin-
ing the importance of a feature based on its topological saliency
that gives preference to certain directions. We could also poten-
tially improve the sensitivity of the proposed measure by repre-
senting features using regions instead of critical points. While
we observe that topological saliency is stable with respect to
both simplification and noise in practice, it will be interesting
to either theoretically prove the same, or to identify conditions
under which this measure is stable.

We envision the use of topological saliency together with
established measures like topological persistence for various
feature detection applications. We believe that the notion of
topological saliency will be useful for higher dimensional data,
where explicit visualization of the data becomes difficult. The

Figure 13: The horse, human and memento models used in the experiments
with the shape descriptor function mapped to color.

topological saliency plot enables the representation of relative
importance of features. This could potentially lead to a good
user interface for exploring feature rich data.
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