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Mesh simplification based on edge collapsing could
improve computational efficiency in near infrared

optical tomographic imaging
Dilip Mathew Thomas, Phaneendra K. Yalavarthy, Deepak Karkala, and Vijay Natarajan

Abstract—The diffusion equation based modeling of near
infrared light propagation in tissue is achieved by using finite
element mesh for imaging real-tissue types, such as breast and
brain. The finite element mesh size (number of nodes) dictates
the parameter space in the optical tomographic imaging. Most
commonly used finite element meshing algorithms does not
provide the flexibility of distinct nodal spacing in different regions
of imaging domain to take the sensitivity of the problem into con-
sideration. This work aims to present a computationally efficient
mesh simplification method that can be used as a preprocessing
step to iterative image reconstruction, where the finite element
mesh is simplified by using an edge collapsing algorithm to
reduce the parameter space at regions where the sensitivity of
the problem is relatively low. It is shown, using simulations
and experimental phantom data for simple meshes/domains, that
a significant reduction in parameter space could be achieved
without compromising on the reconstructed image quality. The
maximum errors observed by using the simplified meshes were
less than 0.27% in the forward problem and 5% for inverse
problem.

Index Terms—near infrared imaging, diffuse optical tomog-
raphy, three-dimensional imaging, image reconstruction, mesh
simplification.

I. INTRODUCTION

D IFFUSE optical tomography has the potential to become
an adjunct imaging modality for breast and brain imag-

ing due to its capability to provide functional images using
non-ionizing near infrared (NIR) light as the interrogating
media[1]-[3]. Typically the NIR light, wavelength in the range
of 600-1000 nm, is delivered and collected using fibre bundles
at the boundary of tissue. These boundary measurements are
used to reconstruct the internal distributions of optical absorp-
tion and scattering coefficients. Reconstructed optical absorp-
tion and scattering coefficients at multiple wavelengths will
lead to functional images of the tissue under investigation[3].
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As the light propagation at these NIR wavelengths is dom-
inated by scattering[4], the modeling of light propagation for
thick tissue is performed using diffusion equation (DE)[5].
The partial differential equation (PDE) that describes the light
propagation, i.e. DE, is solved using finite element method
(FEM) due to its capability to handle complicated geome-
tries, such as breast and brain[5]-[7]. Finite element method
relies on the discretization of domain into a grid, typically
consisting of triangles or tetrahedra. The PDE to be solved
is assembled over this discretized domain using the basis
functions. The assembled linear system of equations will give
a numerically stable solution for the complicated geometries.
As near infrared optical tomography inverse problem (recon-
struction procedure) relies on solving the PDE repeatedly,
the finite element discretization plays an important role in
terms of modeling accuracy and the number of reconstruction
parameters[6], [8]. The number of reconstruction parameters
for single wavelength case is twice the discretization points
(number of nodes/vertices) in the finite element mesh, where
the factor of two appears as both optical absorption and
reduced scattering coefficients are unknown.

Most molecular imaging techniques that requires solving
diffusion equation relies on the finite element meshes, where
resolution of the reconstructed image is dependent on the nodal
spacing in the finite element mesh. Also, it has been well
known that generation of three-dimensional (3D) meshes with
in a close range of desired nodal spacing is achievable using
most of the commercial and open-source mesh generators[9],
[10]. As 3D imaging problems tend to be highly under-
determined[11], the choice of uniform nodal spacing results
in higher computational complexity compared to meshes that
have different nodal spacing for different regions depending
on the sensitivity of the problem. There were attempts earlier
to use adaptive meshing algorithms in DE based tomographic
image reconstruction procedure[12], where the emphasis was
on refining a coarse mesh at the region of heterogenity.
These adaptive meshing schemes have resulted in improv-
ing the qualitative/quantitative nature of reconstructed hetero-
geneities at an additional computational cost[12]. The main
draw back of these adaptive meshing algorithms is that they
are very sensitive to the changes in the imaging parameters
and artifacts, typically happening at initial iterations, which
leads to refinement in the undesired locations of the imaging
volume[12], [13]. This leads to unnecessary computation. The
earlier work by Eames et. al [14] used Jacobian reduction
method (for the direct Newton-type algorithms) to reduce the
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computational complexity of the reconstruction problem by
ignoring the nodes that does not lie in the most sensitivity
region of the imaging domain. The resulting images were
comparable to the original (using full Jacobian) images. This
approach reduced the computational complexity in terms of
number of operations, but still required to construct a large
memory-intensive full Jacobian matrix. The construction of the
Jacobian consumes approximately 75% of the computational
time in any given iteration[15].

This work addresses the simplification of finite element
mesh based on the sensitivity profile of the imaging domain
with an aim to reduce the computational complexity of both
forward and inverse problems in diffuse optical tomography.
It will be shown that the proposed method here does simpli-
fication of the existing mesh by collapsing the edges outside
the region of interest and does not require any computationally
demanding procedure. The simplification of mesh is performed
as a pre-processing step to diffuse optical tomographic image
reconstruction procedure. The results from simulations and ex-
perimental gelatin phantom cases using the simplified meshes
were compared and contrasted with the results obtained using
the original mesh in terms of quantitative accuracy.

II. METHODS

A. Diffuse optical tomographic image reconstruction

The image reconstruction procedure in diffuse optical to-
mography is performed using iterative least-squares methods,
where the modeled data (G(µ) with µ representing the set
of optical properties) is matched with the experimental data
(y) [5], [16]. The least-squares problem is typically solved
by Levenberg-Marquardt minimization scheme, described in
detail in Ref. [16].

The finite element based frequency-domain diffusion model
for the calculation of G(µ) is described in Refs. [7], [17], here
it is only briefly reviewed. The frequency-domain DE is given
by[17]

−∇.D(r)∇Φ(r, ω) +
(
µa(r) +

iω

c

)
Φ(r, ω) = qo(r, ω) (1)

where qo(r, ω) represents the isotropic light source and c
represents the speed of light in tissue. Φ(r, ω) is photon
density (complex values) at position r for the light modulation
frequency of ω (= 2πf, with f = 100 MHz). The absorption
coefficient is represented by µa(r) and the diffusion coefficient
by D(r), defined as

D(r) =
1

3[µa(r) + µ′s(r)]
(2)

with µ′s(r) representing the reduced scattering coefficient. The
refractive-index mismatch at the tissue boundary is modeled
using Robin (type-III) boundary condition[18]. The µ in this
work represents [D(r);µa(r)].

As described earlier, the imaging domain is discretized into
linear triangular elements (for two-dimensions (2D)) or linear
tetrahedral elements (for 3D) connected at NN vertex nodes.
As light propagates in three-dimensions[19], the discussion
here is for 3D domains with discretization elements as tetra-
hedra. The computational (forward) model for solving the

diffusion equation (DE) leads to linear system of equations
as [7], [17]

MΦ = q (3)

where M is known as the mass matrix with a dimension
of NNxNN (symmetric matrix) and is a function of µ, i.e.
Φ = M−1q = F (µ), with M assembled over all elements of
the finite element mesh. q represents the forcing, including
the source term (qo(r, ω)) and the boundary condition[17].
Sampling of Φ at the measurement position results in the
modeled data, i.e. G(µ) = S{Φ} = S{F (µ)}, where S
represents the sampling matrix (containing source/detector
positions) and F is the forward model[16]. M is highly sparse
(with a banded structure in case of bandwidth optimized FE
meshes) and typically sparse matrix solvers are used to obtain
Φ [4], [17], [20].

The important computational step in the iterative image
reconstruction procedure is to obtain jacobian (J = ∂G(µ)

∂µ ), in
turn G(µ), which gives the rate of change in the modeled data
with respect to optical properties. This J is typically obtained
using the adjoint formulation[17], which requires solving the
forward problem twice, one for the regular source term and
another for adjoint source. The Jacobian J is calculated
at every iteration. The iterative procedure of obtaining the
solution starts with an initial guess for the optical properties
(µ0) typically obtained using the calibration procedure of
experimental data (y)[21], [22].

The frequency-domain data in this procedure is given by y
= [ln(A); θ] under the Rytov approximation, where ln(A) is
the natural logarithm of amplitude (A) and θ is the phase
of the frequency domain signal, making J a real valued
matrix (dimension of 2NMx2NN), where the NM represents
the number of measurements[5], [16].

The objective function of the Levenberg-Marquardt (LM)
minimization is given as[23], [24]

Ω = ‖y −G(µ)‖2 (4)

The update equation (for getting4µ) for the LM minimization
becomes[16],

(JTJ + λI)∆µ = JT (y −G(µ)) (5)

where λ is the regularization parameter, chosen empirically
(starts at 10 multiplied by the maximum of the diagonal values
of JTJ and reduced by a factor of 100.25 at every subsequent
iteration) and I is the identity matrix. The procedure of
calculation of J , G(µ), and subsequently 4µ is repeated until
the relative difference in the objective function (Ω, Eq. 4) does
not improve by more than 2%. Please note that solving Eq. 5
to obtain 4µ, is a computational procedure with number of
operations of order O

(
2∗(2NN)3

3

)
[25], [26].

As it is evident from the procedure the computational
burden of solving the Eq. 5 highly depends on number of
nodes/vertices (NN) of the FEM mesh. The next two sections
will describe the procedure of meshing and its simplification,
that is used in this work.
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III. MESH GENERATION

The finite element mesh generation that is used in NIR
imaging has been discussed in Refs. [9], [10], it is only briefly
reviewed here. In experimental cases, the finite element mesh-
ing requires the surface profile of the imaging domain, which
is either obtained by other imaging modality or stereotactic
cameras. Initially a surface mesh is created using 2D delaunay
using the surface profile of the imaging domain, followed by
3D delaunay to give linear tetrahedral mesh. This is achieved
either using commercial software packages like Mimics[27] or
open-source platforms such as NETGEN[28] and MIVA[29].
In either cases, the input parameters for generation of tetra-
hedral volumetric mesh is either nodal spacing or number of
desired nodes. The generated volumetric meshes typically go
through a post-processing step that makes sure that tetrahedral
volumes in these finite elements are not close to zero (above
the tolerance of the machine). These volumetric meshes are
tagged with appropriate optical properties that can be used
in the diffusion based models. Note that the computation
time associated with volume mesh generation is dependent
on the segmentation procedure involved and nodal distance.
This could be largely subjective as well, as most segmentation
algorithms require input at various stages from the user. Also,
generation of meshes that have different nodal distance in
different parts of imaging domain tends to be difficult task
and also results in instability in meshing algorithms[9], [10].
So most commonly used meshing packages does not give the
flexibility to vary the nodal distance in a given region of the
imaging domain. It is always desirable that nodal distance for
the whole imaging domain is kept constant by the user.

IV. MESH SIMPLIFICATION

The computational cost of the iterative image reconstruction
procedure can be significantly reduced by using a lower reso-
lution approximation of the original mesh. The original mesh
here refers to the mesh that has initial values (guess) of the
optical properties for starting the iterative reconstruction pro-
cedure typically obtained using data-calibration procedure[21],
[22] . This is done by iteratively collapsing edges of the
mesh to generate a simplified mesh having fewer number
of nodes. We identify a region of interest (ROI) that is a
part of the imaging domain that has more sensitivity for a
given source/detector location. The edges that lie outside the
ROI are used in the simplification process, with an aim that
this reduction of nodes does not affect the quality of the
reconstructed images (also shown later). The simplification
scheme, guided by the Quadric Error Metric [30], is compu-
tationally efficient and produces good quality mesh elements
after simplification [31]. The details of the method is described
in Refs. [30], [31] and is briefly reviewed here.

a b

(a)

c

(b)

Fig. 1. (a) Edge ab is selected for collapse. (b) Edge ab is collapsed to c,
the point that minimizes the sum of square distances to all hyperplanes.

Fig. 2. Flowchart outlining major steps of the mesh simplification procedure
based on edge collapsing.

In order to select edges for collapse in a manner that
preserves the properties of the mesh, a cost is assigned to
each edge of the mesh. Each node of the mesh has four
coordinates, three of which are spatial coordinates and the
fourth coordinate has value 0,1, or 2 to indicate the region to
which the node belongs to (fatty, fibro-glandular, and tumor
regions). Each node of the mesh is associated with a set of
hyperplanes. Initially, the set of hyperplanes associated with a
node corresponds to the tetrahedra incident on the node. These
hyperplanes are used to determine the optimal coordinates
for the new node created after an edge collapse. Each edge
is collapsed to the point that minimizes the sum of square
distances to the hyperplanes associated with the end points of
the edge and this minimum distance is the cost assigned to
the edge. The sum of squared distances from the new node to
the hyperplanes is a measure of the local deviation from the
input mesh together with the region labels. When an edge ab
is collapsed to a new node c (refer to Fig. 1), the hyperplanes
act as constraints and ensure the new node minimizes the error
introduced by the edge collapse in representing the geometry
of the boundary of the mesh (the region to which it belongs)
and improves the quality of mesh elements.

Let H be a set of hyperplanes associated with a node
and v = (x, y, z, r)T be any point in R4. Let nh =
(xh, yh, zh, rh)T be the unit normal to a hyperplane h ∈ H
and let ph be a point in h. The squared distance Dh from v
to h is given by the square of the magnitude of the projection
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Fig. 3. The original and simplified finite element meshes of a volunteer having patient ID as 1915. The simplified percentages are given on top of each
mesh with 0% representing the original mesh. The computed region of interest (ROI) is shown in the 50% simplified mesh.

of the vector v − ph onto nh.

Dh = ((v − ph)T · nh)2

Let dh = −pTh · nh. Then Dh can be rewritten as

Dh = V T (Nh ·NT
h )V

where V = (x, y, z, r, 1)T and Nh = (xh, yh, zh, rh, dh)T .
The sum of the squared distance from v to all hyperplanes in
H is

D(v) = V T (
∑
h∈H

(Nh ·NT
h ))V

The 5×5 matrix Q =
∑
h∈H(Nh · NT

h ) is called as the
fundamental quadric and is stored for each node. When an
edge ab is collapsed to c, the fundamental quadric of c is
computed as the sum of the fundamental quadrics of its end
points (Fig. 1). The location of c is determined by finding
the value of v that minimizes D(v). We round the fourth
coordinate of v since the coordinate corresponding to region
information can only take values 0,1, or 2. The cost associated
with each edge is this minimum sum of squared distance from
c. We also use additional hyperplanes that act as constraints
to preserve the geometry of the boundary of the mesh and to
improve the quality of the mesh elements.

A. Choosing Region of Interest

The ROI calculation is primarily based on the Jacobian of
the forward problem, as it represents the sensitivity of the
detected signal to a small change in the optical properties.
As the Jacobian has four kernels, the kernel that is chosen
in determining the ROI is rate of change of logarithm of
amplitude with respect to absorption coefficient. This Ja-
cobian kernel, represented by J̄ , is summed over all the
measurements (column sum) resulting in a one-dimensional
vector (represented by Ĵ , dimension of NN×1) that gives
a relative numerical value for the sensitivity of each node.
Mathematically,

Ĵj =
NM∑
i=1

J̄ij with j = 1, 2, . . . , NN (6)

Using the Ĵ nodes that are having less than 5% of the
maximum sensitivity value are chosen to be used for the
simplification (drawn from conclusions of Ref. [14]). The
ROI contains the region that has atleast 5% or more relative
sensitivity for given source/detector locations in the imaging
domain. That is

ROI = Region containing j’s with Ĵj ≥
5

100
∗max(Ĵ) (7)

Note that the ROI could be multiple regions depending on the
source/detector configuration and imaging domain.

The flowchart in Fig. 2 shows the major steps involved in
simplifying the given near infrared mesh. The initial cost of
each edge is calculated and all edges are inserted into a priority
queue. Candidate edges are selected for collapse outside the
ROI in the order of increasing cost. During simplification, the
end points of each candidate edge is checked to ensure that it
lies outside the ROI. If yes, the edge is collapsed, otherwise
it is rejected. This edge collapse (simplification) is continued
iteratively by selecting edges from the priority queue till the
queue becomes empty or the difference in G(µ) between the
original and the simplified mesh exceeds 1%. The evaluation
of G(µ) for the simplified mesh is not performed after each
edge collapse, instead it is evaluated only at steps of 10%
simplification, i.e. at 10%, 20% and so on.

V. THREE-DIMENSIONAL MESHES

A. Numerical Experiments

In this work, meshes that are considered for simplification
are derived from the volunteers/patients that have gone through
the MRI-NIR studies at Dartmouth College. The volunteer
identity numbers are designated for identifying the meshes.
Along with these, cylindrical mesh and small-animal mouse
mesh (mobi mesh) is used for completeness. The meshes have
the nodes tagged with corresponding tissue types, for example
a breast mesh can have adipose, fibro-glandular, and tumor.
The mesh elements are linear tetrahedra. The background
optical properties were µa = 0.01 mm−1 and µ′s = 1.0 mm−1.
The region that is tagged as tumor had optical properties
as µa = 0.02 mm−1 and µ′s = 2.0 mm−1. The refractive
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index of the imaging domain has been considered as 1.33.
The data-collection geometry consisted of 16 fibers that were
arranged in a circular, equally-spaced fashion in the middle
of the imaging domain. One fiber was used at a time as the
source while other fibers were used as detectors to generate
240 (16x15) measurement locations or a total of 480 values
(240 ln(A) data points and 240 θ data points). The sources
were modeled as a Gaussian profile with a full-width half
maximum of 3 mm to represent the distribution used in an
experimental setup[32]. The source was also placed one mean
transport scattering distance inside the boundary. To mimic the
experimental case[32], a 1% noise in the amplitude and 1o in
the phase has been added to the numerically generated data.
The background optical properties were chosen as the initial
guess for the iterative reconstruction procedure.

To effectively evaluate the algorithm, a cylindrical mesh
that mimics the typical breast optical properties containing
three regions (namely fatty, fibro-glandular, and tumor) along
with three-layers of data-collection is also considered. The
data collection strategy is same as the three-layers of in-plane
data discussed in Section-2 of Ref. [8]. This results in 720
measurement locations (3x240). The fatty and tumor optical
properties are same as the background and target optical
properties discussed earlier. The fibro-glandular region had
optical properties, µa = 0.015 mm−1 and µ′s = 1.5 mm−1.
The numerical experimental procedure that was followed was
similar to the case of other meshes.

All computations were carried out on a Linux work station
with an Intel Xeon 5410 Dual Quad Core 2.33 GHz processor
with 64 GB of RAM.

B. Gelatin Phantom Experiment
A cylindrical gelatin phantom of diameter 86 mm, height 60

mm was fabricated using mixture of India ink for absorption
and Titanium oxide (TiO2) for scattering with a cylindrical
hole extending in Z-direction (diameter 16 mm and height of
59mm) placed close to the boundary. This gelatin phantom
was fabricated by hardening heated gelatin solution consisting
80% deionized water and 20% gelatin (G2625, Sigma Inc)
along with different amounts of ink and TiO2 (Sigma Inc) to
result in background optical properties as µa = 0.008 mm−1

and µ′s = 0.9 mm−1 at wavelength 785 nm using the phantom
preparation procedure described in Ref. [33]. The background
(gelatin) optical properties were estimated at the same wave-
length on large cylindrical sample without the cylindrical hole
using the procedure described in Ref. [21]. The cylindrical
hole (mimicking the tumor) was filled with intra-lipid mixed
with india ink to result in optical properties of µa = 0.02
mm−1 and µ′s = 1.0 mm−1, leading to have the contrast in
only µa. The data was collected using only single layer of
fibers (located in the middle of the phantom) resulting in 480
measurements. A cylindrical mesh consisting of 24,161 nodes
corresponding 116,757 linear tetrahedra elements was used as
the original mesh (named as phantom) and the experimental
data was calibrated using a reference homogeneous phantom
data[21], [22]. Three-dimensional volumetric rendering of
optical properties showing the target distribution is given in
the first column of Fig. 8.

VI. RESULTS

Using the mesh simplification methods discussed earlier,
initially the identification of ROI was performed. After the ROI
identification, the nodes that are lying outside the ROI were
given as the input to the mesh simplification procedure(refer to
Fig. 2) . The simplification was performed in steps, i.e., 10%,
20%, 30%, 40%, and 50% of the original number of nodes.
Please note that this simplification, i.e. to achieve the 10%
less number of nodes compared to original, is performed in
the region outside the ROI. One such example for the volunteer
ID 1915 along with indication of ROI is given in Fig. 3. The
total number of nodes for this particular mesh were, 18723
and the total number of nodes for the simplified mesh were
16850, 14978, 13106, 11233, and 9361 corresponding to 10%,
20%, 30%, 40%, and 50% simplification.
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Fig. 4. Plot of the forward problem error (with respect to the original mesh)
versus simplification percentage in (a). ln(A) (b). θ for different meshes
considered in this work. The corresponding mesh ID/names are given in the
legend of (a).
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Fig. 5. Reconstructed distributions of µa and µ′
s using original and simplified

meshes as given in Fig. 3 along with the target distributions (given in the first
column) with (a). Standard image reconstruction algorithm with out any priors
(b). Hard-prior based reconstruction algorithm.
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TABLE I
TOTAL COMPUTATION TIME (IN SECONDS) FOR RECONSTRUCTION FOR DIFFERENT MESHES/DOMAINS USED IN THIS WORK FOR VARYING

SIMPLIFICATION PERCENTAGES INCLUDING THE NUMBER ITERATIONS (NO. IT). THE LAST COLUMN GIVES THE MAXIMUM REDUCTION FACTOR (MAX
R.F.) IN THE COMPUTATIONAL TIME OBTAINED BY THE MESH SIMPLIFICATION. THE COLUMN BEFORE THAT GIVES THE OVERHEAD TIME FOR THE

SIMPLIFICATION PROCEDURE.

Mesh No. it 0% 10% 20% 30% 40% 50% Over-head Max R.F.
mouse 4 384.8 324 268.4 218.8 173.2 134 70.1 2.9

320 7 949.9 788.9 650.3 508.9 410.9 – 102.7 2.3
1062 13 5450.9 4266.6 3393 2421.9 1742 1196.9 310.2 4.6
1915 6 4327.8 3261.6 2488.2 1804.8 1282.8 888.6 543.4 4.9

Cylinder: 1layer 20 17522.2 13232.6 10154.9 7072.1 5016.3 3416.2 658.3 5.1
Cylinder: 3layers 15 20569.5 16417.5 12937.6 9889.5 7434 – 1023.3 2.8

Phantom 10 14029.1 10612.5 8301.3 5847.2 4068.1 – 1052.2 3.5
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Fig. 6. Quantitative assessment of the data-model misfit and reconstruction
parameter error versus the iteration number for results corresponding to Fig.
5(a). (a). L2 norm of the data-model misfit for the original and simplified
mesh (legend of (c) gives the simplification percentage with 0 corresponding
to original mesh) (b). Difference (in %) between the simplified mesh and
original mesh for results given in (a). The corresponding legend is given in
(d). (c). L2 norm of the difference between target and reconstructed optical
parameters with varying simplification as given in the legend. (d). Difference
(in %) between the simplified mesh and original mesh for results given in (c).

Target 0% 10% 20% 30% 40%

a

's

mm1

mm1

Fig. 7. Reconstructed distributions of µa and µ′
s using original and

simplified meshes along with the target distributions (given in the first column)
for a layered model that mimics typical breast and three layers of data
collection with standard image reconstruction algorithm without any priors.
The simplification percentage is given on the top of the figure (first row).

Next, the accuracy of the forward problem using the sim-
plified meshes were assessed. Totally six meshes (including
the phantom mesh) were considered for this study and the
resulting plots giving the difference between original and
simplified meshes (with simplification percentage given in the
x-axis) is given in Fig. 4. The maximum error percentage for
ln(A) is 0.27% and θ is 1.2o both for the patient mesh with

Target 0% 10% 20% 30% 40%

a

's

mm1

mm1

Fig. 8. Reconstructed distributions of µa and µ′
s using original and

simplified meshes along with the target distributions (given in the first column)
using experimental gelatin phantom data with standard image reconstruction
algorithm without any priors. The simplification percentage is given on the
top of the figure (first row).

ID as 320. It is also evident from Fig. 4 as the simplification
increased (in turn reducing the total number of nodes) the error
increases.

The reconstruction results (for one example case of 1915)
using the simplified meshes given in Fig. 3 are given in Fig. 5
along with the target as the first column. Figure 5(a) gives
the reconstructed results using the standard reconstruction
procedure. Figure 5(b) represents the results obtained using
Hard-Priors[34], where the reconstruction parameter space
is constrained to number of regions segmented using other
imaging modality (in here it is MRI). Qualitatively, by visual
assessment, the reconstructed images using simplified meshes
are similar to the ones obtained using the original mesh (with
0% simplification).

To assess the results observed in Fig. 5(a) quantitatively, the
L2-norm of the data model misfit with the iteration number
is plotted and is shown in Fig. 6(a) for the simplified meshes
along with ones obtained using original mesh (the simplifi-
cation meshes are represented by percentage of simplification
done given in the legend of Fig. 6(c)). Similar L2-norm of the
difference in the target and reconstructed optical properties
are given in the Fig. 6(c). The difference plot (simplified –
Original (0%)) corresponding to Fig. 6(a) and (c) are plotted
in the Fig. 6(b) and (d) respectively. The difference error is
less than 8% and over all error percentage is less than 5%
asserting that the reconstructed image quality has not been
compromised using the simplified meshes. The same trend was
observed for other meshes considered in this work, where the
over all error percentage in the reconstructed parameters did
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not exceed more than 5%.
The reconstruction results using the standard reconstruction

procedure for the cylindrical mesh that mimics the breast
optical properties along with 3 layers of data collection are
presented in Fig. 7. The maximum simplification percentage,
where the forward problem errors are below 1% is only at
40%. Consistent with the results presented in Fig. 5(a) and
6, the difference in the forward and inverse problems in this
case were less than 3%. The simplification of 50% was not
achieved due to high forward problem error (around 10%),
which was beyond the prescribed limit of 1%.

The experimental gelatin phantom reconstruction results
using the standard reconstruction procedure that has contrast
only in µa are given in Fig. 8. The fabricated gelatin phantom
height being only 60 mm, the achievable simplification is only
upto 40% (beyond which the error in the forward problem
was higher than 1%). Note that a boundary artifact in µ′s was
observed in this case. The achieved difference in the forward
and inverse problems between original and simplified meshes
for this experimental phantom case was less than 4%.

As the main discussion of the presented work is about
reducing the computational complexity of the image recon-
struction procedure, for meshes considered here, the total
computational time taken for reconstruction for the simplified
and original meshes are given in Table-I including the number
of iterations. The overhead computational cost required for the
simplification procedure is also given in the last column.

VII. DISCUSSION

Computational modeling of light propagation in complex
domains, such as breast and brain, is a challenging problem.
The finite element approach to do the same is the most
preferred technique due to its versatility in discretizing the
imaging domain. As the computational model is used re-
peatedly in the iterative diffuse optical tomographic image
reconstruction, any reduction in the computation time will im-
mensely reduce the total computational complexity associated
with this procedure. The presented work is aimed at achieving
the same with finite element mesh simplification, resulting in
less number of imaging parameters.

As presented in the literature, three-dimensional meshing
of complex imaging domain tends to be tedious and requires
sufficient user input to get good quality meshes[9], [10].
Varying the nodal spacing for different parts of the imag-
ing domain adds more complexity to the process and most
commercial/open-source packages does not have this option.
This work developed an easy and computationally efficient
process, that uses edge collapsing, to result in a mesh that
has varying nodal spacing depending on the sensitivity profile.
This process was a precursor to the image reconstruction
problem. The mesh simplification procedure is applied on a
uniform mesh with optical properties typically obtained using
data-calibration procedure[21], [22] and does not assume that
target optical properties are known. The anatomical (structural
priors) information of the imaging domain has no bearing on
the simplification procedure, in case where structural priors
are available, the algorithms preserve this information in the
simplified meshes as well.

The simplified meshes were evaluated for forward and
inverse problem accuracy, which has given error bounds to
be less than 5%. For the forward problem it is less than 0.3%
in amplitude and 1.2o in the phase (Fig. 4). As the order of
computation for each iteration of the image reconstruction
procedure is c(2NN)3, with NN as the number of nodes
and c is a constant, reducing NN by 50% the computational
complexity will be reduced by a factor of 8 (theoretically),
which is now c(NN)3. The overhead for the simplification
procedure requires the calculation of Jacobian for calculation
of ROI and running forward problem for every 10% sim-
plification. The specific computational time associated with
the cases discussed here are given in Table-I. The maximum
reduction factor in computational time that was achieved by
the simplification procedure is 5.1 (cylinder: 1 layer case),
which is lower than the theoretical estimate, primarily due
to the fact that the computational cost is not only associated
with number of operations, but also available memory for
performing these operations. The overhead time as predicted
was about 75% of time taken per iteration.

The meshes considered here were real three-dimensional
breast meshes along with mouse and simple cylindrical
meshes. The results showed similar trend for all of them,
asserting that the methodology developed here is applicable
for the complex and simple imaging domains, which have been
discretized by using a finite elements. Also the choice of ROI
is purely based on the sensitivity of the imaging domain, where
no simplification is done, ensured that the error in the forward
and inverse problem calculation are within the acceptable
range. Also the shape of the tumor using original and sim-
plified meshes remained same (Figs. 5, 7, and 8), resulting in
identical results to prove that the developed methodology will
not affect the over all image quality. As modern diffuse optical
tomographic imaging systems typically collect data in three-
dimension (multi-layer, specifically 3 layers), the same 3 layer
data collection strategy with heterogenous optical properties
that mimics the breast optical properties were considered,
in this case the ROI was atleast double in size compared
to that of data collected using single layer. Even here, the
simplification percentage that could be achieved is 40%. In
this case simplification beyond 40% and others over 50% lead
to change in the boundary of the imaging volume, leading to
inaccurate modeling of diffusion equation, where the forward
problem errors were beyond 1%, leading to un-meaningful
estimations of µa and µ′s .

The experimental phantom case results (Fig. 4 and 8)
showed a promise of the developed methodology in im-
proving the computational efficiency of image reconstruction
procedure without compromising the quality of reconstructed
images (last column of Table-I). Even though the reconstruc-
tion results showed a big artifact in µ′s reconstruction at
the boundary, the results were consistent between original
and simplified procedure (Fig. 8) ensuring that there is no
bias in the reconstruction due to simplification even in the
experimental data case. Note that simplification beyond 40%
was unachievable as the the imaging domain consisted of large
ROI due to height of the phantom being only 60mm. The
recovered contrast in µa in this experimental case is only
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about 40% of the expected as three-dimensional reconstruction
is known to give poor performance in terms of contrast
recovery[11]. Also the cylindrical target was reconstructed in
spherical shape as data was only collected using a single layer
of fibers, leading to the sensitivity to fall very quickly beyond
the layer of fibers[8].

It is important to note that in the cases considered here
the ROI has turned out to be one single region extending
in Z-direction leading to the simplification to be done in
two separate parts of imaging domain, but the algorithm can
simplify more than two parts, which might be needed when
handling the complex data-collection systems/strategies that
are currently being used[3].

The important step of ROI calculation is based on the initial
guess of the optical properties, could be obtained using data-
calibration procedure in the experimental cases[21], [22]. Typ-
ical data-calibration procedures, which assumes the imaging
domain to be infinite/semi-infinite, involves removal of biases
and/or numerical-model mismatch from the experimental data
uses analytical solution and results in obtaining the bulk op-
tical properties of the tissue. As it uses the analytical models,
the procedure is computationally inexpensive and results in
optical properties close to the background values[21], [22],
[35]. As the inverse problems are typically solved by Newton-
based frame work[4], [5], [7], [16], it is essential that the initial
guesses are close to the actual solution and any wrong guess
can lead to erroneous results. The same can be expected in
the case of simplified meshes.

The inverse problem in diffuse optical tomography could
be solved using not only full-Newton (including Levenberg-
Marquardt type) as discussed in this work, but with also
gradient-based optimization techniques[3]. In the gradient-
based techniques, even though there is no explicit calculation
and storage of Jacobian, which tends to be memory intensive,
there is a repeated usage of forward problem to calculate
the gradient and to find the optimal step-size. As the mesh
simplification procedure here reduces the parameter space
significantly (upto 50%) in turn reducing the computational
time in solving the forward problem, one can expect the
discussion about reduction of computational complexity to be
valid for these gradient-based optimization techniques as well.

Finite element based numerical models that solve dif-
fusion equation are not limited to diffuse optical tomog-
raphy, also used in tomographic imaging modalities that
use bioluminescence[20] and fluorescence[36] as the contrast
mechanism. Even though most results and discussion revolved
around diffuse optical tomography, these imaging modalities
can also get benefited by the developed methodology. As
computational complexity in reconstructing tomographic op-
tical images using a model-based iterative scheme is one of
the main bottlenecks to get the imaging results in real-time,
methods of this type which reduce the computational burden
become highly attractive to make optical imaging clinically
viable.

VIII. CONCLUSIONS

The three-dimensional diffuse optical tomographic image
reconstruction is a computationally intensive procedure due

to the number of parameters that needs to be reconstructed.
Most generic models use finite element discretization for
numerical modeling of diffusion equation, resulting in the
number of parameters being a factor of number of nodes
in the finite element mesh. Meshing of three-dimensional
volume with different nodal spacing for different regions
is not possible using most of the commercial/open-source
meshing environments, where the desirable mesh will have
more nodes in the sensitive region (ROI) and lesser nodes
else where. The presented work here aimed at introducing a
methodology, where one can perform the mesh simplification
procedure applying on a uniform nodal spaced mesh to achieve
the same as a precursor to image reconstruction procedure.
This mesh simplification procedure can reduce the computa-
tional complexity by a significant factor for three-dimensional
imaging, without compromising on the reconstructed image
quality. This procedure uses an edge collapsing algorithm that
effectively reduces the number of nodes present in the mesh,
thereby reducing the number of parameters. This methodology
has been tested numerically and experimentally for realistic
breast, mouse, and simple cylindrical meshes to assert that the
computed image quality is comparable to the results obtained
using without simplification. The computational algorithms
along with necessary instructions, are available on a web
page [37] as an open-source for the readers. Application of
developed methodology for the patient cases with real data
will be taken up as a future work.
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