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Scalar Field Visualization via Extraction of Symmetric Structures

Talha Bin Masood · Dilip Mathew Thomas · Vijay Natarajan

Abstract Identifying symmetry in scalar fields is a re-
cent area of research in scientific visualization and com-
puter graphics communities. Symmetry detection tech-
niques based on abstract representations of the scalar field
use only limited geometric information in their analysis.
Hence they may not be suited for applications that study
the geometric properties of the regions in the domain. On
the other hand, methods that accumulate local evidence of
symmetry through a voting procedure have been success-
fully used for detecting geometric symmetry in shapes. We
extend such a technique to scalar fields and use it to de-
tect geometrically symmetric regions in synthetic as well as
real-world datasets. Identifying symmetry in the scalar field
can significantly improve visualization and interactive ex-
ploration of the data. We demonstrate different applications
of the symmetry detection method to scientific visualization:
query-based exploration of scalar fields, linked selection in
symmetric regions for interactive visualization, and classifi-
cation of geometrically symmetric regions and its applica-
tion to anomaly detection.

Keywords Scalar field visualization · Symmetry detection ·
Query based exploration.

1 Introduction

Scalar field data have been widely used to represent phys-
ical quantities measured over a domain of interest and the
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underlying properties of the physical phenomena are stud-
ied by examining the distribution of the scalar values. Of-
ten these distributions contain repeating or symmetric pat-
terns and they provide significant insights that aid in the
study of the physical phenomena. For example, in X-ray
crystallography, the symmetric patterns in the intensity of
the diffracted rays play an important role in determining the
structure of the crystal. Automatic detection and visualiza-
tion of symmetry in the scalar field can considerably sim-
plify the challenges faced by the domain scientists in ex-
ploring the data and hence there is a lot of research interest
to develop such techniques.

One of the main challenges in extracting symmetry in-
formation from scalar fields is its computational cost since
scalar field datasets are typically large in size. To reduce
the computational cost, abstract representations of the scalar
field that are much smaller in size like the contour tree [2]
and constellation of crease-line features [11] have been
used in the past for symmetry detection [12, 16]. Instead of
searching for symmetry in the entire dataset, these methods
assume that the symmetry in the data will also be reflected in
the abstract representation and search for symmetric struc-
tures in the abstract representation. Though the reduction in
the size of the search space significantly improves the com-
putational efficiency, symmetric patterns in the abstraction
may not correspond to the symmetry in the data and vice
versa. We describe these methods below and believe that
these abstractions are often not ideal for encoding the sym-
metry in the underlying data.

The contour tree is an abstract representation that cap-
tures the topology of the level sets of the scalar field.
Thomas and Natarajan [16] propose a method to deter-
mine the similarity between two subtrees in the contour tree
through a similarity measure based on the extent of the over-
lap between the subtrees. The similarity measure is then
used to classify the subtrees of the contour tree into differ-
ent groups. The regions of the domain corresponding to the
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Fig. 1 Non-intuitive symmetry detected using contour tree approach.

subtrees that belong to the same group are reported to be
symmetric. However, since the contour tree is a topological
data structure, this method does not ensure that the geometry
of the detected regions indeed exhibit symmetry. For exam-
ple, in Figure 1, the region on the left and the right would be
identified as symmetric since the topology of the level sets
is the same even though the geometry of the two regions
are very dissimilar. Kerber et al. [12] identify crease-lines in
the scalar field and determine the junction points at which
the crease-lines intersect. The geometric transformation that
maps the network of lines in one junction to another is then
computed. Each such transformation is applied to the data
and the symmetric regions are identified by measuring the
deviation in the scalar values between the original and the
transformed regions. However, typical scalar field datasets
contain far more complex features than just crease-lines.
Hence, though the abstraction used is based on geometry,
it severely limits the symmetric regions that can be detected
by the technique.

A wide range of techniques have been studied for ro-
bustly estimating symmetry in shapes as described in the re-
cent survey by Mitra et al. [15]. Since these methods use ge-
ometric properties of shapes to identify symmetry, extending
them to scalar fields, though often not trivial, has the obvious
advantage of being able to detect symmetry in scalar fields
in a geometry-aware manner. Kazhdan et al. [10] detect re-
flective symmetry by using a voxel based representation for
shapes and measuring the degree of reflectivity for each can-
didate plane. Hong et al. [9] extend this idea to scalar fields
and measure the difference in the scalar value of a point and
its reflection to determine the symmetry distance of a plane.
In addition to being computationally expensive, the main
drawback of this method is that it is restricted to detecting
only global reflective symmetry whereas our method can de-
tect partial rotational and translational symmetries also.

Mitra et al. [14] propose a two-step solution for iden-
tifying partial and approximate symmetry. In the first step,
points with similar local shape signature are paired together
and each such pair votes for a symmetry transformation in a
transformation space. Symmetry detection problem can then
be reduced to finding clusters in this high dimensional space
where each cluster corresponds to aggregation of votes for
a particular symmetry transformation. Hence, in the second
step, such clusters are identified and the corresponding sym-
metry transformation is spatially verified and the symmet-
ric patches are extracted. This method is computationally
efficient since statistical evidence of symmetry is first ac-

cumulated before performing the costly operation of spa-
tial verification and can also detect partial symmetries in
the data. Moreover, the clustering mechanism ensures ro-
bustness in the presence of noise. For these reasons, we
adopt this approach to detect partial symmetries in scalar
field in a geometry-aware manner. Extending this method to
scalar field involves significant challenges and are described
in Section 3.

Symmetry plays an important role in enhancing visu-
alization and post-processing of the scalar field data. In
volume visualization, knowledge of the repeating patterns
in the domain helps in designing symmetry-aware transfer
functions that classifies regions of the domain into different
groups based on their similarity [16]. Similarly, isosurface
components can be classified into different symmetric
groups and selectively visualized for better interactive ex-
ploration of isosurfaces [16]. Symmetry detection also helps
in selection of meaningful cross-section planes for slicing
volume data, better visualization of features by applying
different rendering techniques that show complementary
information in the symmetric regions and selection of view
directions that removes redundancies in the data [9]. In
section 4, we demonstrate different methods that make
use of symmetry information to enhance scientific data
visualization and exploration.

Contributions. We make the following contributions to-
wards a symmetry-aware approach to scalar field visualiza-
tion:

– A generic voting-based symmetry identification pipeline
for 2D and 3D scalar fields.

– Local function descriptors for different domains viz.
plane, 3D volume, and 2-manifolds, that are used to de-
tect pairs of points or pairs of regions that have a similar
scalar field distribution.

– A symmetry-aware method for query-based exploration
of scalar fields.

– A method for linked selection in symmetric regions and
its application to interactive visualization of scalar fields.

– A method for classification of geometrically symmetric
regions using scalar field symmetry and its application
to anomaly detection.

2 Background and Definitions

A scalar field, s, is a scalar function defined on a manifold,
M i.e. s : M→ R. In this paper, we consider scalar fields
defined on 2-manifolds and R3. In practice, the scalar field is
available as a discrete sample at vertices of a simplicial mesh
or structured grid that represents the domain. Each vertex
in a mesh is assigned a scalar value. Scalar values at other
points in the mesh are obtained via interpolation.
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(a) (b) (c) (d)

Fig. 2 (a) Three level sets of a scalar field s are shown in different
colors. (b) An arbitrary region in s. (c) A symmetric region pair. (d) A
symmetric pair which is not maximal.

Level set L for a given value v is the preimage of s i.e.
L(v) = s−1(v). Level sets of 3D scalar fields are called iso-
surfaces, while the level sets of 2D scalar fields are called
isocontours. The gradient of a scalar field s is a vector field
that points in the direction of the greatest rate of increase of
the scalar field, and whose magnitude is the greatest rate of
change.

A connected subset r ⊆M of the domain M of a scalar
field s is called a region of s. Two regions r1 and r2 are called
as symmetric if there exists a valid transformation T such
that T (r1) = r2 and s(p) = s(T (p)) for all p ∈ r1. This def-
inition captures exact symmetry which is rarely observed in
real datasets or in synthetic datasets because of discretiza-
tion errors. So, we define a notion of approximate symmetry
where two regions, r1 and r2, are symmetric if T (r1) = r2
and for all points p ∈ r1, s(p) = s(T (p)) + ε , for a small
real value ε . We restrict the transformations to rigid body
transformations of the domain.

A pair of symmetric regions is called a symmetric region
pair if it satisfies the condition of maximality i.e. no more
points of the domain can be added to the regions under the
same transformation. More formally, a pair (r1,r2) is called
a symmetric region pair under transformation T if there does
not exist any region r′1 ⊃ r1 such that the pair (r′1,T (r

′
1)) is

also symmetric under T . The notion of regions and maxi-
mality is illustrated in Figure 2. We define significance of
the symmetric region pair as the volume of that pair.

Now, the problem of identifying symmetry is stated as
that of identifying all symmetric region pairs in the scalar
field with significance greater than a specified threshold.

3 Symmetry Detection Pipeline

Voting-based techniques have been used for identify-
ing symmetry in geometric shapes earlier [14, 15]. Mi-
tra et al. [14] propose a technique where evidence for sym-
metries is accumulated by comparing the local signatures of
sufficient number of samples. The evidence accumulation
is accomplished by identifying the transformations between
pairs of regions that are locally similar and each such pair
votes for a transformation in the space of all transforma-
tions. If many pairs vote for the same transformation then
the number of votes for that transformation becomes high.
Significant symmetries appear as dense cluster of votes in

the transformation space. This evidence is verified by re-
verting back to the spatial domain and the resulting regions
are reported to be symmetric.

We extend the voting-based technique for detecting sym-
metry in scalar fields defined on the plane, 3D volumes
and 2-manifolds. This extension to scalar fields poses many
challenges. A new notion of local signatures for the scalar
field is required which helps capture invariance under trans-
formations. Principal or key directions need to be identified
to determine the geometric transformations that best aligns
local regions of the scalar field.

As a motivation for the solution, let us observe the effect
of rigid transformation on a 2D scalar field. It is clear that
after geometric transformations of a region, quantities like
scalar values, gradient magnitude and curvature of the con-
tour remain unchanged. The direction of gradient and tan-
gent to the contour are transformed according to the speci-
fied transformation. Since symmetry detection involves find-
ing regions which are invariant under transformations, the
observation above leads us to search for point pairs in the
scalar field that have the same scalar value, gradient mag-
nitude and contour curvature. Each such pair thus provides
local evidence for the presence of a symmetric region. For
each pair, given the gradient direction and position of the
points, we determine the transformation. For large symmet-
ric regions, a large number of pairs vote for the same trans-
formation and will appear as dense clusters in the transfor-
mation space. So, the problem of finding symmetric regions
in a scalar field is reduced to finding pairs that can vote
for transformations and clustering in transformation space to
obtain symmetric regions. The reader is referred to Figure 3
for an illustrative example. We now describe our proposed
pipeline for identifying symmetric regions in a scalar field.

(a) A scalar field s (b) Symmetric regions

(c) Normals (d) Pairing (e) Votes

Fig. 3 (a) Three level sets of a scalar field are shown in different colors.
(b) Symmetric regions in this scalar field. The shaded regions are geo-
metrically symmetric. (c) Gradients of the ideal pairs in the symmetric
regions. (d) These gradient vectors are paired up. (e) Angles between
the paired gradient vectors are equal. So, these ideal pairs vote for the
same transformation.
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Fig. 4 Symmetry Identification Pipeline.

3.1 Overview

We employ a two stage approach for identifying symmetry
in scalar fields. The stages of the pipeline are:

1. Evidence accumulation stage: Accumulate evidence for
various symmetries.

2. Validation stage: Verify the validity of symmetries ob-
tained in the previous stage by region growing.

The pipeline is illustrated in Figure 4. The blue blocks in
the figure are substages of evidence accumulation stage. We
discuss these stages in detail below. Figure 5 illustrates the
working of the pipeline on a simple 2D scalar field. First,
the input is sampled. Next, some of these samples are paired
up on the basis of local properties. These pairs are shown
in 5(c). The pairs then vote for transformations in the space
shown in 5(d). Clusters in this space provide evidence for
the symmetries, which is translation for this example. The
region growing stage then generates the symmetric pair of
regions as shown in Figure 5(e).

(a) (b) (c)

(d) (e)

Fig. 5 Application of symmetry identification pipeline on an example
2D scalar field. (a) The input scalar field. (b) Samples. (c) Some of the
pairs selected for voting. (d) Clusters in the transformation space. (e)
An extracted symmetric region pair.

3.2 Sampling

We sample the input domain because the number of points
in the mesh can be very large. It should be noted that as
we increase the sampling rate, new symmetries may be
found. Further increasing the sampling rate will not result
in new symmetries, the increased sampling will merely pro-
vide more evidence for previously found symmetries. So,
sampling strategy along with optimum sampling rate plays
an important role in increasing the efficiency of this pipeline.
We sample the mesh uniformly at the regions where gradi-
ent is greater than a specified threshold. This ensures that
flat regions are ignored.

3.3 Local function descriptor computation

Local function descriptor. For each point sample p we
compute the local function descriptor(LFD). The LFD cap-
tures the local function distribution around a point p on the
domain. The LFD is used by the pairing and voting stages
of the pipeline. The LFD consists of an invariant compo-
nent and an alignment component. The invariant component
consists of properties that remain the same under rigid trans-
formations e.g. scalar value, gradient magnitude, and curva-
ture of the level set passing through the point. The alignment
component consists of vectors that provide a consistent co-
ordinate reference frame at each point. The gradient vector
together with the principal curvature directions of the local
level set act as a local frame. We employ different LFDs for
different domains as listed in Table 1.

If the LFDs of two points have similar invariant com-
ponents, then it is highly likely that the domain geometry
as well as the local distribution of the scalar field around
the points are the same. So, the local regions containing the
points are symmetric and these regions potentially belong
to larger symmetric regions, which would be detected later.
The scalar value and gradient magnitude are invariant under
transformation. Also, transformation of gradient vectors in
two regions is same as the transformation of the correspond-
ing regions. Therefore, gradient vector is a part of the align-
ment component of LFD. Similar to the gradient, the level
sets in the neighborhood of a point are also transformed with
properties like curvature remaining unchanged. These local
properties are sufficient for domains like R2 and R3. How-
ever, for general 2-manifolds we need to ensure that in addi-
tion to the distribution of the scalar field, the domain geom-
etry should also be similar for the two points to be paired up.
So, we introduce the curvature of the domain at the points
as an invariant component and the normal to the surface as
one of the alignment components.
LFD computation. The gradient vector at a point p is ap-
proximated by computing the difference in function values
between its neighbors in the mesh. For 2D scalar fields, the
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Table 1 Local Function Descriptors of a point in the scalar field domain

Domain Local Function Descriptor of a point p
Invariant Component Alignment Component

R2
1.Scalar value, s(p) 1.Gradient vector, ∇s(p)
2.Magnitude of the gradient, |∇s(p)|
3.Curvature of contour L(s(p)) at p

2D Manifold

1.Scalar value, s(p) 1.Gradient vector, ∇s(p)
2.Magnitude of the gradient, |∇s(p)| 2.Surface normal, n
3.Curvature of contour L(s(p)) at p 3.Cross product, ∇s(p)×n
4.Curvature of domain i.e. kmax and kmin

of the surface at p

R3

1.Scalar value, s(p) 1.Gradient vector, ∇s(p)
2.Magnitude of the gradient, |∇s(p)| 2.Principal curvature directions
3.Curvature of isosurface L(s(p)) at p of isosurface L(s(p)) at p

i.e. kmax and kmin i.e. PCmax and PCmin

local isocontour at p restricted to the 1-ring neighborhood
is extracted. The curvature is approximated as the inverse of
the radius of the circle that best fits the contour. This is il-
lustrated in Figure 6. A better curvature approximation can
be obtained by considering 2-ring (k-ring) neighbors of the
point and fitting a spline. For 3D scalar fields, a local isosur-
face is extracted from the tetrahedral mesh. If the domain is
represented using a structured grid, then voxels incident on
p are subdivided into tetrahedra. The local isosurface may
also be extracted directly using the marching cubes algo-
rithm [13]. Once the local isosurface is extracted, the princi-
pal curvatures and directions at p are computed by estimat-
ing the curvature tensor at p [1, 4].

3.4 Pairing

In the pairing stage, we find the point pairs that provide
evidence for symmetry in the scalar field. As a first step,
we prune the sample set P. The points where the minimum
curvature (kmin) is equal to the maximum curvature (kmax)
are called umbilic points. At such points curvature is equal
in all directions, thus we can not find a consistent coordi-
nate frame for alignment for this point. So, we remove such
points from P to obtain P′.

All pairs of points in P′ are compared. If the invari-
ant component of the pairs are equal or within user defined
threshold, then they are added to the voter pairs set V . The

(a) (b)

Fig. 6 The contour passing through the point p is shown in bold red.
The curvature is computed by taking the inverse of the radius of circle
fitted to the contour, shown in red dashed line.

pairing is speeded up by building a kd-tree on the invariant
component of LFD of points. For each point, we determine
its pairs by a range query on the kd-tree. The range query is
built for each point using the tolerance threshold allowed for
each invariant component of LFD. The output of the pairing
stage is the set of point pairs V .

3.5 Voting

In this stage each point pair (pi, p j) ∈ V votes for a trans-
formation. A transformation in the plane is represented as a
point in R3, Ti j = (tx, ty,r), where (tx, ty) is the 2D transla-
tion vector and r is the rotation angle. For the case of gen-
eral 2-manifolds and 3D Euclidean space, a transformation
is represented as a point in R6, Ti j = (tx, ty, tz,rx,ry,rz) where
(tx, ty, tz) is the 3D translation vector and (rx,ry,rz) are the
Euler angles for rotation.

The transformation is computed from the alignment
component of the LFDs of pi and p j. For determining the
transformation vector, first the local coordinate frames of
the points pi and p j are aligned. Let R be the rotation matrix
corresponding to the alignment. The Euler angles (rx,ry,rz)

are determined from this rotation matrix R. The translation
vector (tx, ty, tz) is computed as p j−Rpi. The output of the
voting stage is a set of transformations T.

3.6 Clustering

To determine significant symmetries in the scalar field, clus-
tering is performed in the transformation space. We have
various options for performing clustering like single linkage
clustering, DBSCAN [7] and mean shift clustering [5]. We
believe mean shift clustering would give the best clusters for
our purpose, as it is a density gradient based method where
each point in the space converges to the basin of attraction.
However, during experimentation, we found that even sin-
gle linkage clustering which is much simpler and faster as
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compared to the other two clustering algorithms, gives sat-
isfactory results.

The significance of a cluster is determined by the num-
ber of points assigned to that cluster. A cluster in the trans-
formation space is large only if many point pairs vote for
the same transformation, thus indicating a large symmet-
ric region. We rank the clusters in decreasing order of their
significance, and compute the centroid of the cluster as the
transformation representative of the cluster. The output of
the clustering stage is a ranked list of transformations.

3.7 Validation stage

Transformations obtained from the clustering stage may not
necessarily correspond to a single significant symmetry. It
may happen that pairs from different non-significant regions
vote for the same transformation, thus resulting in a large
cluster. We prune such transformations during the validation
step, and also re-rank the transformations.

During validation stage, region growing is done to deter-
mine the actual regions that voted for a particular transfor-
mation. Region is grown for every significant cluster. This
process is initiated by picking a random pair from the clus-
ter and growing the regions in breadth first fashion. When
no more points can be added to the region without violat-
ing the approximate symmetry threshold, we stop the region
growing process for that pair. If the grown regions covers all
the points in the cluster, then region growing for the cluster
is stopped and we move on to the next cluster. However, if
some points are not covered by region growing of initial pair,
which will happen when disconnected regions have voted
for the same transformation, we repeat the region growing
process for the next uncovered pair in the cluster. This pro-
cess continues until there are no uncovered pairs left in the
cluster.

It should be noted that the region growing process en-
sures that we get connected and maximal regions as re-
quired. The symmetric region pairs (ri,r j) which don’t sat-
isfy the significance threshold are ignored while others are
added to the output along with the associated transformation
under which the pair is symmetric.

4 Application of Symmetry in Visualization

Symmetry information can be exploited for generating bet-
ter visualizations of scalar fields.

The simplest technique of using symmetry in visualiza-
tion is by showing all the symmetric pairs of regions indi-
vidually in a sequence of images. For example, for a slice
from a 3D probability distribution of electrons in a hydro-
gen molecule as shown in Figure 7(f), two pairs of regions
symmetric under rotation by 180°are detected. These pairs

are shown separately in Figures 7(g) and 7(h). Similarly,
Figure 7(j) shows a symmetric pair of regions detected in
the velocity field of a von Karman vortex street flow sim-
ulation. Figure 7(b) shows the temperature distribution on
the surface of a conductor element modeled and simulated
using COMSOL software. The symmetric patches detected
in this dataset are shown in Figure 7(c). Figure 7(d) shows
the pressure field of a Taylor-Green vortex flow simulation.
This dataset has high degree of symmetry. One of the many
symmetric regions is visualized in Figure 7(e).

We now discuss a few applications of symmetry in ex-
ploration and visualization of scalar fields.

4.1 Query-based exploration

Suppose the user identifies an interesting region in the scalar
field and she is interested in repeating occurrences of this re-
gion. To support this, selection of regions using hierarchical
Morse decomposition of the scalar fields is done. One of
the Morse cells is selected as the query region. Morse seg-
mentation is chosen because it is well known technique of
segmentation and the regions correspond to important fea-
tures in the scalar fields [3, 6, 8]. It should be noted that any
segmentation of the domain can be used since our symme-
try identification method is not affected by the choice of the
segmentation technique.

The query region is searched in the scalar field using our
symmetry identification pipeline. A modified version of the
pipeline is used to accomplish this efficiently. In addition to
sampling the domain as before, the query region is also sam-
pled. Then LFDs for all samples are computed but in the
pairing stage points are paired such that one point is from
query region while the other point is from the domain. This
greatly reduces the number of pairs which vote and thus all
the regions symmetric to the given region can be identified
efficiently. This approach can be extended to build a region
retrieval system wherein a query region is provided which is
searched in the database of scalar fields. The system can out-
put all the scalar fields containing the input region ordered
by the frequency of occurrence and symmetric exactness of
regions similar to the query.

Query-based exploration can be applied on scalar fields
defined on any domain, however, for the demonstration of
this technique we will focus on scalar fields defined on gen-
eral 2-manifolds and 3D volumes. In Figure 8, query-based
exploration of scalar fields defined on molecular surfaces
and channels is shown. Skin surfaces are used for generating
the molecular surfaces and channels, while APBS software
is used for generating the electrostatic potential fields. Fig-
ure 8(a) shows trans-membrane protein called Mechanosen-
sitive channel of small conductance (PDB-id:2OAU). One
of the Morse cell is selected as query. The six channels sym-
metric to the query are successfully detected as shown in
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7 Visualization of symmetry. (a) A standard diverging color map called Cool to warm. This color map is the default color map used in this
paper. (b) COMSOL Conductor dataset. (c) A pair of symmetric regions visualized by using different colors for the regions. (d) A Taylor-Green
vortex flow simulation dataset. (e) A pair of symmetric regions identified in this dataset. (f) A slice from a 3D probability distribution of electrons
in a hydrogen molecule. (g) A pair of symmetric regions. (h) Another pair of symmetric regions detected in the slice. (i) von Karman vortex street
flow simulation. (j) One of the identified pair of symmetric regions.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 8 Query based exploration on scalar fields defined on 2-manifolds. In these figures the query regions are shown in pink while the results are
shown in green. (a) Skin surface of the channel network in a membrane protein mapped with the electrostatic field. (b) Query region and result. Six
channels are symmetric to the query. (c) A channel in Gramicidin mapped with electrostatic potential. (d) A Morse cell as query and the symmetric
region. (e) A similar result for another Morse cell as query. (f) Molecular surface of Gramicidin mapped with the electrostatic potential field. (g)
A query region along with the result. (h) A scenario where the query and result regions are completely occluded by the molecular surface. (i) To
visualize the occluded regions, the context is shown in translucent wire frame.

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n)

Fig. 9 Query based exploration on 3D scalar fields. (a) A scalar field representing ab-initio molecular dynamics simulation on water molecules.
The water molecules are distributed in arbitrary orientations across the domain. (b) We selected one water molecule as a query region (pink) using
Morse decomposition. (c) – (h) The symmetry detection pipeline identifies all the other water molecules in the domain. Each figure shows the
query molecule in pink while the symmetric region to it is shown in green. (i) A Cryo-EM dataset (EMD-id:1319) with four fold symmetry. (j) We
selected a query region which is highlighted in yellow. The symmetry identification pipeline successfully identifies the three symmetric regions
which are shown in red. (k) and (l) A similar result for another Cryo-EM dataset (EMD-id:1654) with four fold symmetry. (m) Pressure field of
a Taylor-Green vortex flow simulation. (n) The query which is one octant of the dataset is shown in yellow while the three symmetric octants are
shown in red.
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Figure 8(b). Figure 8(c) to Figure 8(e) show similar results
for primary channel through Gramicidin (PDB-id:1GRM).
Two queries along with their results on the surface of the
channel are shown. We also show results for molecular skin
surface of Gramicidin. Figures 8(f) to 8(i) show results for
two different queries. As shown in Figure 8(g), the first
query detects only one region symmetric to it, even though
that residue repeats eight times in the molecule. We correctly
get only one of these regions because the electrostatic po-
tential is different at other patches due to different neigh-
borhoods. The second query as shown in Figure 8(h) is an
example where the query and the result are occluded by the
molecular surface. To handle such cases we use translucent
wire frame of the complete dataset to give context to the
symmetric regions.

In Figure 9, results for query-based exploration of 3D
scalar fields are shown. The first dataset which is consid-
ered is ab-initio molecular dynamics simulation of water
in which water molecules are distributed in arbitrary ori-
entations in the domain. This is shown in Figure 9(a). Us-
ing Morse decomposition, one of the water molecule is se-
lected as the query. The selected region is shown in pink
in Figure 9(b). With the selected molecule as a query, all
the other water molecules in the field are found as shown in
Figures 9(c) to 9(h). In each of these figures, the query re-
gion is shown as pink while the other region in symmetric
pair is shown in green. Two Cryo-EM datasets with four-
fold rotational symmetry are shown in Figures 9(i) and 9(k).
These datsets represent measured quantities and are there-
fore noisy. We successfully detect symmetric regions even
in the presence of noise, as shown in Figures 9(j) and 9(l).
Lastly, we show a result for a Taylor-Green vortex flow sim-
ulation. The dataset is shown in Figure 9(m). Here, the query
is chosen as one of the quadrant of the dataset. Three other
quadrants which are symmetric to the query region are ob-
tained as shown in Figure 9(n).

4.2 Symmetry-aware linked selection and interaction

Using symmetry identification, we identify a group of sym-
metric regions. Since we have information of the transfor-
mation between any two symmetric regions we know the
point correspondences. We use the correspondences to allow
linked selection of subregions in these symmetric regions.
The user can choose a region from the group of symmetric
regions and explore it further. If a subregion in this region is
selected, the same selection is automatically reflected in all
the symmetric regions. The modes of selection can be var-
ied e.g. thresholding based on function value, clipping by a
plane, etc. The user can assign a transfer function to a sub-
region which will automatically be used for the remaining
symmetric subregions. Refer to Figure 10 for an example of
this technique for 2D scalar fields.

4.3 Classification of symmertic patches

For scalar fields defined on 2-manifolds, we have symmetry
at two levels. Firstly, there is symmetry in the domain Sec-
ondly, we have symmetry when we consider the scalar field.
Clearly, two regions identified as symmetric while consider-
ing the scalar field have symmetric domains as well. How-
ever, the reverse is not true. So, here we first identify a set of
regions whose domains are geometrically symmetric, then
we classify this set by considering the scalar field based
symmetry.

This technique is demonstrated in Figure 11. We show
our results for heat sink dataset. This dataset is generated us-
ing COMSOL software. The heat sink has ten geometrically
symmetric plates as shown in Figure 11(c). However, all the
plates are not symmetric if we consider the temperature dis-
tribution. We find four pairs of symmetric plates as shown
in Figures 11(e) to 11(h). So, the original group of sym-
metric plates are further classified into different symmetric
groups based on scalar field distribution. The new grouping
obtained is shown by giving distinct color to different groups
symmetric patches. This color coded classification is shown
in Figure 11(d).

4.4 Anomaly detection

The previous technique can also be used for anomaly de-
tection. Suppose the domain has symmetric structures. We
know beforehand what the ideal scalar field distribution
should be for one such group of structures. We can use
our scalar field symmetry identification method to detect the
structures which do not have ideal scalar field distribution.
These structures may point to some anomaly e.g. consider
the stress distribution on the columns of a bridge. Ideally
each column should have similar stress distribution, but if
our method identifies a column which has significantly dif-
ferent stress distribution then it may point to some structural
defect in the bridge.

We demonstrate this technique in Figure 12. We ob-
tained a 3D model of crab and generated a new mesh by
chopping off three of its legs from one side as shown in Fig-
ure 12(a). Now, the average geodesic distance for the mod-
ified model is computed. Because of asymmetry in the new
model, the distribution of average geodesic field becomes
different for one of the legs while it is comparable for the re-
maining legs. If we identify symmetric regions in the model
without taking into account the scalar field, then all the legs
are identified as symmetric as shown in Figure 12(c). How-
ever, if we execute our scalar field symmetry pipeline then
one of the legs will not be identified as symmetric to other
members of the group as shown in Figure 12(e). We report
that region as anomalous and in such cases it may point to
defect.
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(a) (b) (c) (d) (e)

Fig. 10 Symmetry aware selection and editing. (a) A synthetic 2D scalar field with six fold symmetry. (b) A Morse cell selected as a query
region. (c) Symmetry detection identifies all the regions symmetric to the query. The region chosen for further exploration is shown in pink, while
symmetric regions are shown in green. (d) All the symmetric regions are linked to the chosen region. Any selection made in the chosen region
is reflected in regions symmetric to it. Here, a subregion is selected in chosen region based on function value thresholding. Corresponding set is
automatically selected in other regions. (e) The subregion can be interactively modified.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 11 Classification of domain symmetries based on symmetry in scalar field. (a) The heat sink dataset. (b) The domain of heat sink dataset.
(c) The geometry based symmetry extraction on the domain identifies all the plates as symmetric. (d) The symmetry in scalar field distribution on
these plates is used to classify the plates in different symmetric group. Plates which are symmetric to each other with scalar field are given same
color. (e)–(f) The plates which are symmetric are shown with their scalar field distributions in the context of the domain.

(a) (b) (c) (d) (e)

Fig. 12 Use of scalar field symmetry for anomaly detection. (a) A 3D model of crab with three of its legs missing from one side. (b) Average
geodesic distance field. (c) Geometry based symmetry extraction on the domain identifies all the five legs as symmetric. (d) Scalar field distribution
is different on one leg as compared to others. (d) The anomalous leg is shown as red while the legs shown in green are symmetric in terms of scalar
field distribution as well as domain geometry.

(a) Original (b) Noise: 0% (c) Noise: 10% (d) Noise: 20% (e) Noise: 50%

Fig. 13 Effect of noise on symmetry detection. (a) Original conductor dataset. (b) to (e) The results obtained for different levels of noise. A few
level sets are shown to show local effect of noise. Number of votes for this symmetry out of total votes is also mentioned.

5 Performance and Robustness

Table 2 lists the runtimes of various stages of the pipeline for
some of the datasets. All experiments were conducted on a
workstation with a dual core Intel Xeon 2GHz processor,
4GB, and on Java Runtime Environment JRE-6. As evident
from results shown, the time taken for the sampling, LFD
computation, pairing, and voting stages is small. The overall

time is primarily determined by time taken in the clustering
and region growing stages.

Noise in the data adversely affects the method as it based
on comparing local properties, which are sensitive to noise.
However, the clustering stage is able to detect significant
symmetries even in presence of tolerable noise. We demon-
strate the robustness of the symmetry detection pipeline
with the following experiment. Given an input dataset, we
introduce increasing levels of noise to generate synthetic
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Table 2 Performance Results

Time taken (seconds)
Dataset No. of Early Clus- Region

Vertices stages tering growing
Synthetic-1 Fig 5(a) 40000 0.37 0.28 0.57
Hydrogen Fig 7(f) 16384 0.81 1.51 1.38

vonKarman Fig 7(i) 80000 8.43 2.21 1.97
Synthetic-2 Fig 10(a) 40000 2.72 8.21 1.31
Conductor Fig 7(b) 8598 0.56 0.59 6.11

2OAU Fig 8(a) 13494 0.53 0.23 1.27
1GRM-1 Fig 8(c) 6210 0.57 0.68 2.66
1GRM-2 Fig 8(f) 25943 1.11 0.22 1.12
Heater Fig 11(a) 28675 1.18 2.24 7.22
Water Fig 9(a) 262144 12.59 99.91 11.91

CryoEM-1 Fig 9(i) 68921 5.97 2.98 2.87
CryoEM-2 Fig 9(k) 132651 6.22 6.82 7.75

Vortex Fig 9(m) 262144 3.26 2.69 11.42

datasets. Figure 13 shows results of an experiment on the
conductor dataset with noise level specified by a parameter
k that ranges from k = 0 to k = 50%. Scalar values at a ran-
dom set of k% points from the mesh are perturbed by a ran-
dom value drawn from Gaussian distribution with zero mean
and 10% standard deviation. All parameters used in the sym-
metry detection pipeline remain unchanged. The symmetric
legs are detected in all the cases. As expected, the number
of votes for the symmetry decreases with increasing noise
levels. However, the number of votes are sufficient for the
detection of translational symmetry in all cases. Further, the
noise does affect local properties like contour curvatures and
gradients. However, the clustering stage tolerates this noise
and detects the symmetries. The number of votes for a sym-
metry may go down below the detectable threshold. In such
cases, the pairing tolerance parameter may be tuned to in-
crease the votes. However, determining a good tolerance pa-
rameter is an interesting and challenging problem. We also
suggest employing a preprocessing routine to remove out-
liers and smoothing the data for better results.

6 Conclusions and Future Work

In this paper we have defined the notion of symmetry in
scalar fields which incorporates geometry and proposed a
voting based approach for detecting partial and approximate
symmetry. This approach overcomes the problems associ-
ated with detecting symmetry using similarity within topo-
logical structures like contour trees since they do not cap-
ture geometry. Our method works for scalar fields defined
on general 2-manifolds including 2D Euclidean space and
3D Euclidean space. We show results for variety of datasets
from different research domains including real, synthetic,
and those obtained from simulations, thus showing the ver-
satility of our method.

One major disadvantage of the method is efficiency. In
future, parallelizing various stages of the symmetry iden-
tification pipeline can be done to increase efficiency. An-
other limitation is that currently only translation and rotation
transformations are considered. Supporting all transforma-
tions is a much harder problem. The technique of voting in
transformation space and clustering may not work in such a
scenario, and a different approach may be required. We plan
to address these challenges in future.
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12. Kerber, J., Wand, M., Krüger, J., Seidel, H.P.: Partial symmetry
detection in volume data. In: P. Eisert, K. Polthier, J. Hornegger
(eds.) Vision, Modeling, and Visualization (2011)

13. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution
3d surface construction algorithm. SIGGRAPH Comput. Graph.
21(4), 163–169 (1987)

14. Mitra, N., Guibas, L.J., Pauly, M.: Partial and approximate sym-
metry detection for 3d geometry. ACM Transactions on Graphics
25, 560–568 (2006)

15. Mitra, N.J., Pauly, M., Wand, M., Ceylan, D.: Symmetry in 3D
Geometry: Extraction and Applications. In: EG 2012 - State of
the Art Reports, pp. 29–51 (2012)



Scalar Field Visualization via Extraction of Symmetric Structures 11

16. Thomas, D.M., Natarajan, V.: Symmetry in scalar field topol-
ogy. IEEE Transactions on Visualization and Computer Graphics
17(12), 2035–2044 (2011)


