
Constructing Reeb Graphs using Cylinder Maps

Harish Doraiswamy
Department of Computer
Science and Automation

Indian Institute of Science
Bangalore 560012, India

harishd@csa.iisc.ernet.in

Aneesh Sood
Department of Computer
Science and Automation

Indian Institute of Science
Bangalore 560012, India

aneesh.sood@gmail.com

Vijay Natarajan
Department of Computer
Science and Automation

Supercomputer Education and
Research Centre

Indian Institute of Science
Bangalore 560012, India

vijayn@csa.iisc.ernet.in

ABSTRACT
The Reeb graph of a scalar function represents the evolution of the
topology of its level sets. In this video, we describe a near-optimal
output-sensitive algorithm for computing the Reeb graph of scalar
functions defined over manifolds. Key to the simplicity and effi-
ciency of the algorithm is an alternate definition of the Reeb graph
that considers equivalence classes of level sets instead of individual
level sets. The algorithm works in two steps. The first step locates
all critical points of the function in the domain. Arcs in the Reeb
graph are computed in the second step using a simple search pro-
cedure that works on a small subset of the domain that corresponds
to a pair of critical points. The algorithm is also able to handle
non-manifold domains.
Categories and Subject Descriptors: I.3.5 [Computational Ge-
ometry and Object Modeling]: Geometric algorithms, languages,
and systems
General Terms: Algorithms

1. INTRODUCTION
The Reeb graph of a scalar function is obtained by mapping each

connected component of its level sets to a point. Level set compo-
nents that contain critical points of the function map to nodes of the
graph. The abstract representation of level-set topology within the
Reeb graph enables development of simple and efficient methods
for modeling objects and visualizing scientific data. They serve as
an effective user interface for selecting meaningful level sets [1]
and for designing transfer functions for volume rendering [8].

In this video, we illustrate an efficient two-step algorithm† for
computing the Reeb graph of a piecewise-linear (PL) function in
O(n+ l + t log t) time, where n is the number of triangles in the in-
put mesh, t is the number of critical points of the function, and l is
the size (number of edges) of all critical level sets. For a compar-
ison of our algorithm with existing approaches we refer the reader
to the paper where we proposed the algorithm [4].

2. BACKGROUND
Let Md denote a d-manifold with or without boundary. A smooth,

real-valued function f : Md→R is called a Morse function if it sat-
isfies the following conditions [3]:

†The algorithm is described in a paper that appeared in the Pro-
ceedings of the International Symposium on Algorithms and Com-
putation [4].

Copyright is held by the author/owner(s).
SCG’10, June 13–16, 2010, Snowbird, Utah, USA.
ACM 978-1-4503-0016-2/10/06.

1. All critical points of f are non-degenerate and lie in the inte-
rior of Md .

2. All critical points of the restriction of f to the boundary of
Md are non-degenerate.

3. All critical values are distinct i.e., f (p) 6= f (q) for all critical
points p 6= q.

The above conditions typically do not hold in practice for PL
functions. However, simulated perturbation of the function [5, Sec-
tion 1.4] ensures that no two critical values are equal. A total order
on the vertices helps in consistently identifying the vertex with the
higher function value between a pair of vertices.

Critical points and level sets. Critical points of a smooth function
are exactly where the gradient becomes zero. Critical points of a
PL function are located at vertices of the mesh [2].

The preimage of a real value is called a level set. The level set of
a regular value is a (d−1)-manifold with or without boundary, pos-
sibly containing multiple connected components. We are interested
in the evolution of level sets against increasing function value. Sig-
nificant topological changes occur at critical points, whereas topol-
ogy of the level set is preserved across regular points [6].

The link of a vertex consists of all vertices adjacent to it and the
induced edges, triangles, and higher-order simplices. Adjacent ver-
tices with lower function value and their induced simplices consti-
tute the lower link, whereas the adjacent vertices with higher func-
tion value and their induced simplices constitute the upper link. In
the context of Reeb graphs, we are only interested in critical points
that modify the number of level set components. So, it is sufficient
to count the number of connected components of the lower / upper
link for identifying these critical points. Given a critical point ci,
call the level set f−1(f (ci)) as a critical level set.

Reeb graph. The Reeb graph of f is obtained by contracting each
connected component of a level set to a point [7]. The Reeb graph
expresses the evolution of connected components of level sets as
a graph whose nodes correspond to critical points of the function.
Nodes corresponding to minima and maxima have degree one. A
node that corresponds to a saddle has degree three if the saddle
merges / splits level set components. Genus modifying saddles do
not alter the number of level set components. They are optionally
included into the Reeb graph as degree two nodes.

The above description of the Reeb graph focuses on the mapping
between individual level set components and nodes or points within
arcs of the graph. We propose the use of an alternate but equivalent
mapping, where nodes are mapped to components of critical level
sets, and each arc is mapped to a cylinder, which is a collection
of regular level set components that are topologically equivalent to
each other. The advantage of our proposed alternate map is that a

Figure 1: Reeb graph of the height function defined on a solid
2-torus. Reeb graph tracks the topology of level sets.

simple and efficient algorithm to compute the Reeb graph follows
immediately from the mapping.

3. THE REEB GRAPH ALGORITHM
We now describe an algorithm [4] that computes the Reeb graph

of a PL function f defined on a 3-manifold. We assume that the
input manifold is represented by a triangulated mesh, the function is
sampled at vertices, and linearly interpolated within each simplex.

The algorithm follows from the alternate mapping described in
the previous section. It consists of two steps:

1. Locating critical points in the domain and sorting them based
on function value.

2. Identifying pairs of critical points that define cylinders and
inserting the corresponding arcs in the Reeb graph.

The link of a vertex in a 3-manifold is a triangulation of a sphere.
The vertex is regular if it has exactly one lower link component and
one upper link component. All other vertices are critical. A criti-
cal point is a maximum if the upper link is empty and a minimum
if the lower link is empty. Else, it is classified as a saddle. We
perform a breadth first search over the link to count the number of
components of the upper and lower links.

Level set and cylinder representation. The 3-manifold is repre-
sented by a tetrahedral mesh. A level set of the input scalar function
is generically a surface that is represented by a collection of tri-
angles. However, the algorithm requires only the 2-skeleton (ver-
tices, edges, and triangles) representation of the domain and the
1-skeleton (vertices and edges) representation of level sets. This
is because the 1-skeleton captures the connectivity of level sets,
which is exactly what we aim to abstract into the Reeb graph. Edges
in a level set of f lie within unique triangles in the domain. So,
a level set is represented by a collection of triangles in the input
mesh. Cylinders are also represented as a collection of mesh tri-
angles. Specifically, the cylinder bounded by two critical level set
components is represented by triangles that contain the intermedi-
ate level set components.

Connecting the critical points. We compute arcs in the Reeb
graph by tracing paths within each cylinder. Let {c1,c2, . . . ,ct} be
the ordered set of critical points with function values { f1, f2, . . . , ft}
and fx < fy whenever x < y. Let Li denote the set of triangles con-
taining the components of the critical level set f−1(fi) that is mod-
ified by ci. The ith iteration of the algorithm connects ci with a set
of critical points cp (fp > fi).

Each component of the upper link corresponds to a potential new
arc in the Reeb graph that connects ci with a higher critical point.
We trace the cylinders bounded below by a level set component

of ci in the ith iteration of the algorithm. Starting from a triangle
incident on an upper link component of ci, we march to an adjacent
triangle that is incident on a vertex with a higher function value.
This traversal is equivalent to tracing a path within a cylinder. We
continue the traversal until we reach a triangle that contains an edge
of the level set f−1(fi+1). We insert an arc into the Reeb graph
between nodes corresponding to ci and ci+1 if this triangle is part of
the critical level set Li+1. If the triangle does not belong to Li+1, we
continue the traversal until it reaches a higher critical level set. If a
search initiated from two components of the upper link of ci reaches
the same component of a critical level set, then ci is declared a
genus modifying saddle and the Reeb graph remains unaffected.
We obtain the Reeb graph of f once all critical points are processed.

Discussion. Tracking the connected components of the level set
requires only a 1-skeleton representation, which can be extracted
from the 2-skeleton of the input mesh. So, the algorithm works
directly on the 2-skeleton representation of d-manifolds (d ≥ 2). In
the case of non-manifolds, we relax the definition of critical points
to include all vertices that modify the topology of the level set.
Candidate critical points are again located by counting the number
of connected components of the lower and upper link.

Our algorithm in the worst case has an O(n+ l + t log t) running
time, where n is the number of triangles in the input, t is the number
of critical points of the input PL function and l is the total size of
all critical level sets. Though it is possible in theory that l = O(n2),
we notice that l is usually O(n) in practice.

4. ABOUT THE VIDEO
The video animates the various stages of our algorithm for com-

puting the Reeb graph of the height function defined on a solid
2-torus shown in Figure 1. Models were created and rendered us-
ing Blender (http://www.blender.org) and our implementation of
the algorithm. The volume rendered images showing Reeb graphs
for various datasets was created using VTK (http://www.vtk.org).
The video was edited using Blender.

Acknowledgements. Harish Doraiswamy is supported by Infosys
Technologies Ltd., Bangalore, under the Infosys Fellowship Award.
This work was also supported by the Department of Science and
Technology, India, under Grant SR/S3/EECE/048/2007.

5. REFERENCES
[1] C. L. Bajaj, V. Pascucci, and D. R. Schikore. The contour

spectrum. In Proc. IEEE Conf. Visualization, pages 167–173,
1997.

[2] T. F. Banchoff. Critical points and curvature for embedded
polyhedral surfaces. Am. Math. Monthly, 77:475–485, 1970.

[3] K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan,
and V. Pascucci. Loops in Reeb graphs of 2-manifolds. Disc.
Comput. Geom., 32(2):231–244, 2004.

[4] H. Doraiswamy and V. Natarajan. Efficient output-sensitive
construction of Reeb graphs. In Proc. Intl. Symp. Algorithms
and Computation, pages 557–568, 2008.

[5] H. Edelsbrunner. Geometry and Topology for Mesh
Generation. Cambridge Univ. Press, England, 2001.

[6] Y. Matsumoto. An Introduction to Morse Theory. Amer. Math.
Soc., 2002. Translated from Japanese by K. Hudson and M.
Saito.

[7] G. Reeb. Sur les points singuliers d’une forme de pfaff
complètement intégrable ou d’une fonction numérique.
Comptes Rendus de L’Académie ses Séances, Paris,
222:847–849, 1946.

[8] G. H. Weber, S. E. Dillard, H. Carr, V. Pascucci, and
B. Hamann. Topology-controlled volume rendering. IEEE
Trans. Vis. Comput. Graph., 13(2):330–341, 2007.

