
Tracking change in Topology during Downsampling

A PROJECT REPORT

SUBMITTED IN PARTIAL FULFIMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Engineering

IN

Computer Science And Engineering

BY

Raman Preet Kaur

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

June, 2016

Declaration of Originality

I, Raman Preet Kaur, with SR No. 04-04-00-10-41-14-1-11145 hereby declare that the

material presented in the thesis titled

Tracking change in Topology during Downsampling

represents original work carried out by me in the Department of Computer Science and

Automation at Indian Institute of Science during the years 2014-16.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Prof. Vijay Natarajan Advisor Signature

1

c© Raman Preet Kaur

June, 2016

All rights reserved

DEDICATED TO

The Student Community

Acknowledgements

I express my profound gratitude and sincere thanks to Prof. Vijay Natarajan for his valuable

guidance, caring supervision and priceless feedback for the progress of this project. I am grateful

to everyone who stood beside me during the course of my project. I would like to express my

sincere gratitude to all my labmates especially Vidya and Talha for their help and support,

throughout the duration of my project. I would like to thank all my classmates and colleagues

for their unconditional support throughout my course.

i

Abstract

We study the topological effects of downsampling in 3-D scalar fields represented over struc-

tured grids. To capture the extent of topological changes during downsampling, we consider

Extended Branch Decomposition Graph (eBDG) based measure. While computing eBDG score

of comparison between low resolution scalar fields and original scalar field, an additional pa-

rameter of position along with persistence is introduced. We compare and analyze the eBDG

cost with Root Mean Sqaure Distance (RMSD) and Structural SIMilarity (SSIM) index.

ii

Contents

Acknowledgements i

Abstract ii

Contents iii

List of Figures iv

1 Introduction 1

2 Motivation 2

3 Background 3

4 Related Work 6

5 Methods 8

6 Results 13

7 Observations 19

8 Conclusions and Future Work 21

Bibliography 22

iii

List of Figures

3.1 Contour tree tracks the contours of the level set as they split, join, appear and

disappear. It can be created by merging the join tree and split tree. Adapted

from [15]. 4

3.2 Branch Decomposition Tree. Adapted from [15]. 5

6.1 Experiments performed on Fuel dataset, resolution 64 × 64 × 64, storing 8 bits

per voxel. Shows simulation of fuel injection into a combustion chamber 13

6.2 Downsampling of Fuel Dataset . 14

6.3 eBDG Cost Plot . 15

6.4 RMSD Plot . 16

6.5 SSIM Plot . 16

6.6 Left image shows 64 × 64 × 64 Fuel dataset and the right image shows the

downsampled 32× 64× 64 Fuel dataset. 17

6.7 Left and right image shows the matchings obtained based on only persistence

and persistence and position considered together in 64 × 64 × 64 (left) when

compared with 32 × 64 × 64 (right) . For both images the larger spheres (less

opaque ones) correspond to matches based on persistence. The smaller ones,

more opaque spheres correspond for matches when both persistence and position

are taken into account. 17

6.8 Children, of eBDG node that maps to the complete join tree of original 64×64×64

fuel dataset and eBDG node from eBDG of 32 × 64 × 64 downsampled dataset

that has minimum eBDG score, are plotted in blue and green respectively. The

lines are drawn between the ones matched. 18

6.9 The image shows the critical points corresponding to the children nodes of eBDG

node that maps to the complete join tree of original 64 × 64 × 64 fuel dataset.

The most opaque sphere corresponds to the eBDG node with highest persistence

that did not match. 18

iv

Chapter 1

Introduction

Scientific simulations and experiments such as study of objects or spaces which use scanning

techniques like satellite imaging, medical imaging, 3D radar imaging, and various fields in

physics where we need temperature distribution throughout space, pressure distribution in a

fluid often generate scalar fields. These scalar fields are available as an array of values over the

polygonal mesh (structured or unstructured). For space or low resolution requirements various

applications require to downsample the structured or unstructured grids. Downsampling is

common in image processing, scientific visualization of data in fields ranging from material sci-

ence to medicine. But downsampling can introduce geometric or topological errors. Topological

properties in scalar fields carry important information. These help to navigate in data, identify

noise, used to compare, analyze and simplify volumetric data, check the quality and plausibility

of extracted shapes and structures [3,6,13,18,19,24], so analyzing the change in topology while

downsampling becomes critical.

The study aims to track and analyze the change in topology in 3D structured grids of scalar

values as we move from high resolution data to low resolution data during downsampling.

It helps to analyze various downsampling techniques by relatively comparing the topological

changes introduced by each approach. This study also helps to visualize which topological

properties/features are retained or lost during downsampling. Our work helped to quantify the

extent of topological change introduced during downsampling.

1

Chapter 2

Motivation

Some work has been done in the field of topology aware or topology preserving dowsampling

[4,10]. But none of them gives a guarantee to preserve topology. So we first study the standard

sampling techniques and aim to capture the topology change during iterative downsampling.

We analyze and quantify the change in topology at each iteration, which can help the user to

stop at certain iteration where the topology change exceeds the permissible limit.

Also most of the applications require to retain the type of mesh during downsampling. The

topology aware or topology preserving downsampling techniques apply mesh modifications. In

3D these techniques decompose the original mesh into tetrahedral mesh. Bong-Soo and Sohn

[17] have shown topology preserving tetrahedral decomposition of trilinear cell where they

decompose a cube with trilinear interpolation into a set of tetrahedra with linear interpolation,

where they are trying to preserve isosurface topology. So modifying the original mesh type is an

additional constraint imposed by topology aware downsamping techniques. But in our study

we are using standard sampling techniques without modifying the mesh.

Further there is work done to capture the topology changes in unstructured grids but struc-

tured grids which are more ubiquitous need to be studied for the topological effects of down-

sampling.

2

Chapter 3

Background

The work builds upon methods developed that apply Morse theory to computer graphics and

visualization. Morse theory studies the topology of manifolds by way of level sets of scalar fields

defined over the manifolds. The topological properties of a scalar field refer to the topology of

the level sets.

Let f : M −→ R be a piecewise linear function defined over a mesh M. Let M be a triangulated

mesh. For a vertex v of M, the star of v, denoted by St(v), consists of all triangles incident on

v. The link of v, denoted by Lk(v), is the boundary of St(v) i.e., the cycle formed by edges of

M that are not incident on v but belong to the triangles of St(v). The lower(resp. upper) link of

v, Lk−(v)(resp. Lk+(v)), is the subgraph of Lk(v) induced by vertices u with h(u) < h(v)(resp.

f(u) < f(v)) [2].

A minimum(resp. maximum) of M is a vertex v for which Lk+(v)(resp.Lk−(v)) is empty. A

maximum or a minimum vertex is called a extremal vertex. A non-extremal vertex v is regular

if Lk−(v) (and also Lk+(v)) is connected, and saddle otherwise.

The level set for an isovalue υ ∈ R is defined as a set of points p ∈ M where f(p) = υ. The

υ-sublevel set and υ-superlevel set of M denoted by M<υ and M>υ respectively, consist of points

p ∈ M with f(p) < υ and f(p) > υ respectively. We refer to level set Mυ where υ = f(p) for

some critical vertex p as a critical level. A contour of M is a connected component of a level

set of M.

Contour tree is an abstract way of representing a scalar field. It was introduced by Boyell

and Ruston [4] as a summary of the evolution of contours on a map(i.e. in 2-D). Contour

tree was used by Freeman and Morse to find terrain profiles in a contour map [7]. This was

then introduced by Van Kreveld et al. [22] to compute isolines on terrain maps in geographic

information systems. It captures the topological properties of a scalar field. The contour

tree is a graph that tracks contours of the level set as they split, join, appear and disappear.

3

Figure 3.1: Contour tree tracks the contours of the level set as they split, join, appear and
disappear. It can be created by merging the join tree and split tree. Adapted from [15].

It is obtained by contracting level set to a point. Formally, it is the quotient space under

an equivalence relation that identifies all points within a connected component of a level set.

Intuitively it is obtained by continuously collapsing each contour in the level set into a single

point. One can imagine that for continuous function there is surjection map φ : M −→ Tf such

that φ(x) = φ(y) if and only if x and y are from the same contour. To obtain the contour tree,

sweep through the input in decreasing order of function values. A vertex is a join saddle if

two level set components merge at that vertex during the sweep. It is split saddle if a single

component splits into two components at that vertex. The method is explained in Figure 3.1

[15]. The contour tree has been extensively used in image processing and geographic information

systems. [9,11,16,18]. Contour trees are unrooted and can be computed by merging two rooted

trees: the join tree and split tree, together referred as merge trees.

A join tree can be subdivided hierarchically into branches known as branch decomposition

tree (BDT) according to the weight of the edges. Each node in BDT corresponds to branch

of the join tree commenced by Pascucci et al. [14] shown in Figure 3.2 [15].

4

Figure 3.2: Branch Decomposition Tree. Adapted from [15].

5

Chapter 4

Related Work

Martin Kraus et al. [10] studied topology guided downsampling for structured volume grids.

They have tried to preserve the scalar values of the critical points and not the critical points

themselves. It is quite possible that the critical point might shift to the point in the neighbor-

hood. And they have also assumed the relative importance of critical points to preserve the

scalar values i.e. extremal points in their study have been given more importance than saddles

and many more.

Renato Pajarola et al. [8] studied topology preserving and controlled topology simplifying mul-

tiresolution isosurface extraction based on recursive bisection of tetrahedra. There they modify

the mesh and also they give no guarantee of topology being preserved.

Bong-Soo et al. [17] studied topology preserving tetrahedral decomposition of trilinear cell.

Again there they give no guarantee for topology preservation.

There is work done on volume rendering of large scalar fields on low resolution devices (mobile

devices) using subsampling techniques [20] where they propose sampling techniques that help

to preserve topology during subsampling. But there too it is not guaranteed that the topology

is preserved.

There exist approaches that deal with the comparison of topological structures. Beketayev et

al. [12] compare two merge trees by means of branch decompositions. Large number of branch

decompositions are considered to avoid instabilities resulting in long computation times. Cohen-

Steiner at al. [5] introduced bottleneck distance between persistence diagrams. The measure

is robust to noise but does not incorporate sub-level set nesting information. The sub-level set

information is better captured by merge trees. The closest work to our study is due to Saikia

et al. [15]. They compare all subtrees of two merge trees in an efficient manner exploiting

redundancy. They introduce a novel data structure called the extended branch decomposition

6

graph (eBDG) which is composed of the branch decompositions of all subtrees of the merge

tree. An efficient algorithm based on dynamic programming has been provided to compare

two eBDGs. Our study extends their work to include position of critical points along with the

persistence to compute the comparison score.

7

Chapter 5

Methods

For tracking and quantifying the change in topology during downsampling, the idea is to use

eBDG based measure.

eBDG Computation and Comparison

1. Computation:

The first step is to compute the join trees for original scalar field and downsampled scalar fields.

The join trees are computed using a fast and memory efficient parallel algorithm proposed in

[1] with time complexity of O(Vgrid+T log T) where Vgrid are the vertices in the structured grid

and T are the critical points in the complete domain. The join tree is represented by (V,E)

where V represents the critical points and V ⊆ T as it includes maxima, saddles and one global

minimum and each edge is given by (vi, vj) such that vi, vj ∈ V .

The join trees obtained are used to compute the eBDGs. eBDG avoids redundancy by combining

the branch decomposition trees (BDT) of all the subtrees of a join tree into a single graph

structure. The branch decomposition tree Bbdt i is given by:

Bbdt i = (Bi, Si)

with the nodes Bi = {b : b = {ex, ..., ey} with ex, ..., ey ∈ E} representing the branches and the

edges Si representing their hierarchy.

For eBDG computation we start with edges of the join tree that contain a maximum. The

branch decomposition tree for these edges will be a single node representing the edge. The

position Pi corresponding to these eBDG nodes will be the position of associated maximum.

We initialize the eBDG with these trivial branch decompositions Bbdt i for all maxima vi ∈ V :

Bbdt i = (ei, {})
where ei = (vi → vj) = (vi, vj) is the unique edge in the join tree starting from vi. The weights

8

Wi of these trivially created nodes Bbdt i and their levels Li are given by:

Wi = wi Li = 0

where wi is the weight of the edge ei. This initialization creates the level 0 nodes of the eBDG.

Then the algorithm visits every saddle of the join tree and updates the eBDG. The update of

each saddle consists of adding a new node and number of edges to the eBDG.

The updation is done as follows:

Let vi denotes a saddle with (vk → vi) ∈ E and all Bbdt k have already been computed. Then

we can compute Bbdt i = (Bi, Si) as follows:

l = argmax{Wx : (vx → vi) ∈ E}
Bi = ei ∪Bl

Si = Sl ∪ {(Bi → Bk) : (vk → vi) ∈ E ∧ k 6= l}
with the weight of the root node of Bbdt i, level and position given by

Wi = Wl + wi

Li = max({1 + Lk : (vk → vi) ∈ E ∧ k 6= l} ∪ Ll)
Pi is the position of the maximum associated with the root node of Bbdt l.

This computation at every saddle vi can be interpreted as: the heaviest branch Bl is identified

and combined with the edge ei to form root node of Bbdt i. All other branches are assigned as

children. Also all children of heaviest branch are assigned as children of Bbdt i.

2. Comparison:

After computing the eBDGs for original and downsampled versions, the next step would be

the comparison of the eBDGs. Bottom-up approach and memoization are used to compare an

eBDG node to another - including their children.

Consider two eBDGs B1 and B2 where B1 represents the eBDG computed for original dataset

and B2 represents eBDG computed for the downsampled version.

The cost between the level-0 nodes B1
i and B2

j is given by the cost function:

c(B1
i , B

2
j) =

dist(P 1
i , P

2
j)+ | W 1

i −W 2
j |

2

where dist(P 1
i , P

2
j) is the L2 norm or L2 distance between P 1

i and P 2
j .

Higher level nodes have children which also need to be matched up such that it leads to the

minimum cost. The key of the algorithm is memoization: if the minimum cost of matching a

lower-level node is already computed, then it requires to match the immediate children.

The eBDG nodes are visited in ascending order of the levels and compute the cost as:

9

c(B1
i , B

2
j) =

dist(P 1
i , P

2
j)+ | W 1

i −W 2
j |

2
+ c(F 1

i , F
2
j)

where c(F 1
i , F

2
j) is the cost of matching the two sequences of trees below B1

i and B2
j . The

lower level are processed first, then this only requires to match up the sequences of values. The

matching obtained must not have any crossings because if present, that implies higher valued

saddles are getting matched to lower-valued saddles.

Matching two sequences without edge crossings can be solved by divide-and-conquer as proposed

in [8]. There are three choices at any moment:

1. leave out the first node in the first sequence.

2. leave out the first node in the second sequence.

3. match the first two nodes.

Then this leads to following formulation,

c(F 1
i , F

2
j) = d0,0(F

1
i , F

2
j)

where dp,q(F
1
i , F

2
j) is the minimal cost of matching the two sequences of trees F 1

i and F 2
j at

indices p and q respectively.

F 1
i and F 2

j are given by:

F 1
i = {B1

i,0, B
1
i,1, B

1
i,2,B

1
i,m}

F 2
j = {B2

j,0, B
2
j,1, B

2
j,2,B

2
j,n}

HereB1
i hasm children andB2

j has n children. The dp,q({B1
i,0, B

1
i,1, B

1
i,2,B

1
i,m}, {B1

j,0, B
1
j,1, B

1
j,2,B

1
j,n})

can be written as dp,q. The dynamic programming expression can be written as:

dp,q = min


dp+1,q + c(B1

i,p)

dp,q+1 + c(B2
j,q)

dp+1,q+1 + c(B1
i,p, B

2
j,q)

where p ∈ {0,,m} and q ∈ {0,, n}. The dp,n+1 = dm+1,q = 0. Whenever a node is left, the

cost of leaving that node also includes the cost of leaving all its children.

That can be computed as:

10

c(Bi) = Wi + c(Fi)

c(Fi) =
∑
c(Bk) ∀k ∈ children(i)

Thus an all to all score matrix is obtained. The rows and columns of the matrix correspond to

the nodes of B1 and B2 respectively. Now from this matrix we find the minimum score column

for the last row. The last row corresponds to the node of B1 which maps to complete join tree

of the original scalar field. We backtrack and find the matchings for this node and its children.

The cost of comparison (score) and the matched and unmatched nodes are analysed and plot-

ted as graphs and visualized in paraview (an open source multiple-platform application for

interactive scientific visualization).

The space complexity of the comparison algorithm is O(N1N2 + b1b2) where N1 and N2 denote

the sizes of the two eBDGs and b1 and b2 denote the average branching factors. The time

complexity is O(N1N2b1b2).

RMSD

We compute the RMSD values for the downsampled versions on comparing with the original

scalar field. The downsampled versions are tri-linearly interpolated to obtain the same number

of points in the original scalar field.

RMSD is given by:

RMSD(X,Y) =

√√√√ 1

N

N∑
i=1

|xi − yi|2

where X,Y are the original and interpolated downsampled scalar fields respectively.

SSIM

The third measure computed is SSIM, proposed by Wang et al. [17]. SSIM is a method to

quantify the visibility of errors (differences) between a distorted image and a reference image.

In our study we have extended it to 3D so as to use the same for the scalar fields defined on

3D structured grids. To compute SSIM, similar to RMSD, the downsampled scalar fields are

tri-linarly interpolated. Suppose x and y are two set of scalar values on a subset of points of 3D

structured grid (e.g., spatial subcubes extracted from original and downsampled scalar field).

Here at each point, local statistics µx, σx and σxy are computed. Here µx is mean intensity, σx

11

is standard deviation and σxy is the correlation (inner product) cofficient between x and y, all

are considered in a simple and effective way to quantify structural similarity.

SSIM is given by:

SSIM(x,y)=
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)

The constants C1 and C2 are introduced to avoid instability when denominator is close to zero.

If X,Y are the original and interpolated downsampled scalar fields respectively; xj and yj are

the scalar field values at the jth local window (11×11×11 cube centered at jth grid point); M is

the number of local windows of the scalar fields, then the Mean SSIM (MSSIM) is computed as:

MSSIM(X,Y) =
1

M

M∑
j=1

SSIM(xj, yj)

The implementation and results are performed on Intel Core i5-3337U CPU 1.80GHz×4 pro-

cessor with 4GB RAM and 100GB hard disk.

12

Chapter 6

Results

To compare and analyze the change in topology during downsampling, the experiment is per-

formed on Fuel dataset (obtained from volvis.org).

The original fuel dataset shown in Figure 6.1 has the resolution 64 × 64 × 64, storing 8 bits

per voxel. The dataset is simulation of fuel injection into a combustion chamber. The higher

the density value, the less presence of air.

Figure 6.1: Experiments performed on Fuel dataset, resolution 64× 64× 64, storing 8 bits per
voxel. Shows simulation of fuel injection into a combustion chamber

The table in Figure 6.2 shows the results for three measures considered that are eBDG based

cost, RMSD and SSIM.

13

Figure 6.2: Downsampling of Fuel Dataset

The results for various downsampled versions are computed when compared with original fuel

dataset i.e. 64× 64× 64.

The RMSD value 0 corresponds to identical datasets and greater than 0 and less than 1 implies

different datasets. More the value of RMSD means more structural difference. SSIM value of 1

implies structurally identical datasets. And as values goes towards 0, implies more difference.

The first column in the table mentions the dimensions of various downsampled versions of fuel

dataset. Under eBDG Column, in the first column it shows the total number of eBDG nodes,

where each node refers to a unique sub tree in the join tree. And we are interested only in

the last node (corresponds to whole join tree). The second column mentions the number of

children of this special last node. And then in next column it shows the number of matched

eBDG nodes. After that the table shows the eBDG cost. And next to it are the prominent

persistence values of the unmatched eBDG nodes.

Next, the table has RMSD and SSIM values.

The table on a whole gives an idea for various downsampled versions as how the topology and

structure of datasets change when we downsample the original scalar field.

The plots in Figures 6.3, 6.4, and 6.5 show the percentage change based on eBDG, RMSD

and SSIM measures considered respectively, when we keep on downsampling the dataset start-

14

ing from 64× 64× 64 till we reach 16× 16× 16 resolution in Fuel.

The green line plot is for x-dimension, blue is for y-dimension and red is for z-dimension being

downsampled gradually in above mentioned dimensions respectively.

On the x- axis of the plots, the cases are numbered as mentioned below:

1. x=0 for 64× 64× 64 fuel.

2. x=1 for 32× 64× 64 for green line, 64× 32× 64 for blue and 64× 64× 32 for red.

3. x=2 are for 32 × 32× 64 and 32× 64× 32 for green and 64× 32× 32 and 32× 32× 64

for blue and 64× 32× 32 and 32× 64× 32 for red.

4. x=3 is for 32× 32× 32 fuel.

5. x=4 for 16× 32× 32 for green line, 32× 16× 32 for blue and 32× 32× 16 for red.

6. x=5 are for 16 × 16× 32 and 16× 32× 16 for green and 32× 16× 16 and 16× 16× 32

for blue and 32× 16× 16 and 16× 32× 16 for red.

7. x=6 is for 16× 16× 16 fuel.

(a) Plot shows the percentage change of eBDG cost during downsampling. The
indices on x-axis correspond to the downsampled versions of fuel dataset as men-
tioned earlier in Results section and y-axis shows the percentage of eBDG cost.

(b) Down-
sampled
Versions
on X-Axis

Figure 6.3: eBDG Cost Plot

15

(a) Plot shows the percentage change of RMSD values during downsampling.
The indices on x-axis correspond to the downsampled versions of fuel dataset as
mentioned earlier in Results section and y-axis shows the percentage change of
RMSD values.

(b) Down-
sampled
Versions
on X-Axis

Figure 6.4: RMSD Plot

(a) Plot showing the percentage change of (1-SSIM) values during downsampling.
The indices on x-axis correspond to the downsampled versions of fuel dataset as
mentioned earlier in Results section and y-axis shows the percentage of (1-SSIM)
values.

(b) Down-
sampled
Versions
on X-Axis

Figure 6.5: SSIM Plot

16

Figure 6.6: Left image shows 64 × 64 × 64 Fuel dataset and the right image shows the down-
sampled 32× 64× 64 Fuel dataset.

Figure 6.7: Left and right image shows the matchings obtained based on only persistence
and persistence and position considered together in 64 × 64 × 64 (left) when compared with
32 × 64 × 64 (right) . For both images the larger spheres (less opaque ones) correspond to
matches based on persistence. The smaller ones, more opaque spheres correspond for matches
when both persistence and position are taken into account.

17

Figure 6.8: Children, of eBDG node that maps to the complete join tree of original 64×64×64
fuel dataset and eBDG node from eBDG of 32×64×64 downsampled dataset that has minimum
eBDG score, are plotted in blue and green respectively. The lines are drawn between the ones
matched.

Figure 6.9: The image shows the critical points corresponding to the children nodes of eBDG
node that maps to the complete join tree of original 64×64×64 fuel dataset. The most opaque
sphere corresponds to the eBDG node with highest persistence that did not match.

18

Chapter 7

Observations

Observations based on the plots shown in Figures 6.3, 6.4, 6.5 :

1. In Figure [6.3], the eBDG cost can be seen to substantially increase when we drop points

in x-dimension. This is justified because in Fuel dataset, the data is concentrated along

x-axis.

2. In Figure [6.3], at index 1 on the x-axis of the plot (for 32× 64× 64 resolution), there is

sudden increase in topology change. This is due to a very high persistent feature (eBDG

weight 138.918) being lost on dropping points in x-dimension. While for 64× 32× 64 and

64×64×32 at index 2 on the x-axis of the same plot, the percentage change is extremely

less. The same can be verified from the details given under persistence column in Figure

[6.2]. Further downsampling results in addtional loss of topological features but all with

less persistence.

3. While in RMSD plot and SSIM plot (Figure [6.4], Figure [6.5] respectively), dropping

points in y and z dimension overshadows the cost of dropping points in x-dimension.

In Figure [6.6], the original fuel dataset i.e. with resolution 64×64×64 and the downsampled

version with 32×64×64 resolution are shown in paraview. For the same datasets Figure [6.7]

shows the matching obtained by eBDG measure, based on only persistence and persistence and

position considered together.

For these we can observe:

1. The cardinality of matches obtained based on persistence and position together is less

than the cardinality of matches obtained by considering only persistence. This can be

19

justified because an additional constraint of position is included along with persistence

which leads to less number of matches.

2. Few matches out of the ones obtained by considering both persistence and position are

completely different from the ones obtained by considering only persistence. The same

can be verified by seeing exclusively placed solid small spheres. This can be explained

because it is more likely that the critical point has moved to a point in its neighborhood

during downsampling and should be matched with a critical point nearby rather than

matching it based on persistence alone. So considering position and persistence together

can result in few matches that are different from matches obtained by considering only

persistence.

Figure [6.8] shows the matchings between the children of eBDG node, from eBDG of original

64 × 64 × 64 fuel dataset, that maps to complete join tree and eBDG node from eBDG of

32× 64× 64 downsampled dataset that has minimum eBDG score. The plot clearly shows that

there is one high persistent eBDG node (blue point located approximately at center) which

is unmatched and rest unmatched nodes are with very low persistence. This unmatched high

persistent node can be visualized in paraview as shown in Figure [6.9].

20

Chapter 8

Conclusions and Future Work

In the study we have considered one downsampling algorithm to see how the process of down-

sampling results in topology change. We considered eBDG measure to quantify the topology

change and compared with RMSD and SSIM values. The matchings obtained by eBDG mea-

sure can be visualized and analysed in paraview.

In nutshell, considering these three measures together helps to compare topology and struc-

tural changes that results from downsampling. One can decide on sampling techniques to be

considered that result in less topology change by analysing the costs. As the results help to

visualize and quantify topology changes during downsampling, it can help to guide where one

should stop during downsampling.

The work can be extended for other approaches where we require to compare scalar fields

defined on the same domain like studying time varying scalar fields.

This work can also contribute in the field of comparing and analysing multifield data.

21

Bibliography

[1] Aditya Acharya and Vijay Natarajan. A parallel and memory efficient algorithm for con-

structing the contour tree. In 2015 IEEE Pacific Visualization Symposium (PacificVis),

pages 271–278. IEEE, 2015.

[2] Pankaj K Agarwal, Lars Arge, Thomas Mølhave, Morten Revsbæk, and Jungwoo Yang.

Maintaining contour trees of dynamic terrains. arXiv preprint arXiv:1406.4005, 2014.

[3] Chandrajit L Bajaj and Daniel R Schikore. Topology preserving data simplification with

error bounds. Computers & Graphics, 22(1):3–12, 1998.

[4] Roger L Boyell and Henry Ruston. Hybrid techniques for real-time radar simulation. In

Proceedings of the November 12-14, 1963, fall joint computer conference, pages 445–458.

ACM, 1963.

[5] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence

diagrams. Discrete & Computational Geometry, 37(1):103–120, 2007.

[6] Herbert Edelsbrunner and John Harer. Computational topology: an introduction. American

Mathematical Soc., 2010.

[7] H Freeman and SP Morse. On searching a contour map for a given terrain elevation profile.

Journal of the Franklin Institute, 284(1):1–25, 1967.

[8] Thomas Gerstner and Renato Pajarola. Topology preserving and controlled topology sim-

plifying multiresolution isosurface extraction. In Proceedings of the conference on Visual-

ization’00, pages 259–266. IEEE Computer Society Press, 2000.

[9] Christopher Gold and Sean Cormack. Spatially ordered networks and topographic re-

constructions. International Journal of Geographical Information System, 1(2):137–148,

1987.

22

BIBLIOGRAPHY

[10] Martin Kraus and Thomas Ertl. Topology-guided downsampling. In Volume Graphics

2001, pages 223–234. Springer, 2001.

[11] In So Kweon and Takeo Kanade. Extracting topographic terrain features from elevation

maps. CVGIP: image understanding, 59(2):171–182, 1994.

[12] Dmitriy Morozov, Kenes Beketayev, and Gunther Weber. Interleaving distance between

merge trees. Discrete and Computational Geometry, 49:22–45, 2013.

[13] Vijay Natarajan and Valerio Pascucci. Volumetric data analysis using morse-smale com-

plexes. In International Conference on Shape Modeling and Applications 2005 (SMI’05),

pages 320–325. IEEE, 2005.

[14] Valerio Pascucci, Kree Cole-McLaughlin, and Giorgio Scorzelli. Multi-resolution compu-

tation and presentation of contour trees. In Proc. IASTED Conference on Visualization,

Imaging, and Image Processing, pages 452–290. Citeseer, 2004.

[15] Himangshu Saikia, Hans-Peter Seidel, and Tino Weinkauf. Extended branch decomposition

graphs: Structural comparison of scalar data. In Computer Graphics Forum, volume 33,

pages 41–50. Wiley Online Library, 2014.

[16] Jayanta K Sircar and Juan A Cebrian. Application of image processing techniques to the

automated labelling of raster digitized contour maps. In Proceedings of the 2nd Interna-

tional ACM Symposium on Spatial Data Handling, pages 171–184, 1986.

[17] Bong-Soo Sohn. Topology preserving tetrahedral decomposition of trilinear cell. In Inter-

national Conference on Computational Science, pages 350–357. Springer, 2007.

[18] Shigeo Takahashi, Tetsuya Ikeda, Yoshihisa Shinagawa, Tosiyasu L Kunii, and Minoru

Ueda. Algorithms for extracting correct critical points and constructing topological graphs

from discrete geographical elevation data. In Computer Graphics Forum, volume 14, pages

181–192. Wiley Online Library, 1995.

[19] Shigeo Takahashi, Yuriko Takeshima, and Issei Fujishiro. Topological volume skeletoniza-

tion and its application to transfer function design. Graphical Models, 66(1):24–49, 2004.

[20] Debasish Tapna. Interactive volume rendering of large scalar fields on mobile devices

using subsampling techniques. Master’s thesis, Department of Computer Science and

Automation, Indian Institute of Science, Bangalore, 6 2011.

23

BIBLIOGRAPHY

[21] Dilip Mathew Thomas and Vijay Natarajan. Symmetry in scalar field topology. IEEE

transactions on visualization and computer graphics, 17(12):2035–2044, 2011.

[22] Marc Van Kreveld, René van Oostrum, Chandrajit Bajaj, Valerio Pascucci, and Dan

Schikore. Contour trees and small seed sets for isosurface traversal. In Proceedings of

the thirteenth annual symposium on Computational geometry, pages 212–220. ACM, 1997.

[23] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality

assessment: from error visibility to structural similarity. IEEE transactions on image

processing, 13(4):600–612, 2004.

[24] Gunther H Weber, Scott E Dillard, Hamish Carr, Valerio Pascucci, and Bernd Hamann.

Topology-controlled volume rendering. IEEE Transactions on Visualization and Computer

Graphics, 13(2):330–341, 2007.

24

	Acknowledgements
	Abstract
	Contents
	List of Figures
	1 Introduction
	2 Motivation
	3 Background
	4 Related Work
	5 Methods
	6 Results
	7 Observations
	8 Conclusions and Future Work
	Bibliography

