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Abstract

Study of molecular interaction and investigation of binding sites can solve many open ques-

tions in biochemistry and molecular biology. Molecular channels are paths leading to the

binding sites or paths traversed by ions and solvent molecules through the macromolecule.

Behavior of protein molecule depends on these channels. We have proposed a new algorithm

which uses regular triangulation of atoms to find molecular channels.
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Chapter 1

INTRODUCTION

Molecular interactions play a very important role in physiology of organisms. Molecular inter-

actions are also studied pharmacologists to develop safe and effective medication. Channels,

cavities, voids, and pockets are some of the important features of macromolecules that are stud-

ied by researchers to understand relationships between the structures and activities of macro-

molecules. For example, finding whether a molecule (say A) can reach another molecule’s (say

P) site of interaction through its (P’s) molecular channels, key features of membrane channels,

the geometry of ribosomal polypeptide exit channels, the architecture of biomolecular com-

plexes, etc.

Several different methods for finding and visualizing molecular channels have been pro-

posed previously. Some of them use geometrical models like Voronoi diagrams[16][14] and

Delaunay triangulations while others have used grid based approach[17]. Several new tech-

niques of visualization of molecular channels has been proposed[14] which include path illu-

mination, surface clipping and more.

In this work, we have applied the notion of regular triangulation to find and represent

molecular channels (described in Chapter 5). Molecular channels are described and defined in

detail in chapter 2. We have also investigated different ways of visualizing molecular channels,

which are implemented in collaboration with other students.
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Chapter 2

PROBLEM DEFINITION

A given macromolecule may have a large number of possible paths which can be accessed by

a given solvent molecule. We define all these possible paths as Network of paths through the

molecule. Figure 2.1(a) shows regular triangulation of a macromolecule and corresponding

network of paths in Figure 2.1(b).

A Molecular Channel(s) is defined as the set of particular paths from the network of paths

which are always accessed by a given solvent molecule in a given macromolecule. Therefore a

different solvent molecules may have different molecular channels in a given macromolecule,

because of following:

1. Size of solvent molecule.

2. Hydrophobic properties of solvent molecule or atoms along a molecular channel.

3. Electrostatic interaction of solvent molecule and atoms along a molecular channel.

Our aim is to develop a tool that uses regular triangulation to find molecular channels in

a macromolecule. Our algorithm finds shortest and widest path(s) from the network of paths,

that can be taken by a given solvent. We call such paths, Significant paths. We find significant

path from network of path by giving cost to each path based on the following formula,

cost = length/width2

2



Chapter 2. PROBLEM DEFINITION 3

(a) Regular Triangulation (b) Network of paths

(c) Significant paths (d) Molecular channel

Figure 2.1: (a) Regular triangulation of Atoms. (b) Possible network of paths(in green) through
Atoms. (c) Significant paths(in brown) to Target location from network of paths in Figure (b).
(d) Molecular channel(in blue) identified by the user from significant paths in Figure (c).

Hence significant path is path with minimum cost. Significant paths may contain molecular

channels. The intuition is that the ions or solvents choose shortest and widest paths.

The tool we developed helps the user to visualize individual paths from significant paths

and their properties such as electrostatic potential. This helps the user to identify Molecular

channels from significant paths.



Chapter 3

RELATED WORK

Many tools have been developed which try to find cavities and pockets in molecules. CASTp[5]

uses geometrical models like alpha complexes and regular triangulation[13][6] to find cavities

on protein surface. POCKET[12] and SURFNET[11] try to find cavities by filling them with

spheres of given probe radius, and then creating their surfaces and volumes. In POCKET

spheres are placed on a fixed regular lattice and adjusted in size until they touch the nearest

atom. SURFNET considers relevant pairs of atoms and places a sphere midway between them

and reduces its size if it conflicts with any neighboring atom.

The problem of molecular channel detection is studied by many research groups by em-

ploying different approaches. Of these approaches, geometry based approaches are significant

from computational science perspective. Here we shall describe some of the most relevant

ones.

The following group of tools create surfaces and volumes of channels using probe spheres.

SURFNET[11], HOLLOW[8] and 3V[20] uses probe sphere of variable radius, and VOIDOO[9]

uses water molecule as probe. HOLLOW and 3V uses grid based approach to find surfaces

and volumes of channels.

The following approaches try to find molecular channels in proteins. Most of them require

user-defined starting position. One such tool is HOLE[19] which uses a Monte Carlo simulated

annealing procedure to find the best route for a sphere with variable radius to squeeze through

the channel. CAVER[17] uses grid based path search method, where each grid has weight

4



Chapter 3. RELATED WORK 5

proportional to the distance from the molecule, and Dijkstra’s shortest path algorithm is used to

detect path. MOLE[16] uses Voronoi diagram which is provided as graph to Dijkstra’s shortest

path algorithm, where edge weights in graph are proportional to length of edge and inversely

proportional to square distance to the molecule. Lindow et al.[14] used Voronoi diagram of

spheres to detect molecular channels in similar fashion as MOLE where edge weight was equal

to edge length. They also developed a filtering pipeline to extract significant paths.

3.1 Known Molecular Channels

Figure 3.1 shows some known molecular channel computed by MOLE algorithm. Figure 3.2

shows some known molecular channel computed by algorithm described by Lindow et al.

(a) Haloalkane dehalogenase (PDB: 1CQW) (b) Carbonic Anhydrase (PDB:3EYX)

Figure 3.1: Known channels computed by MOLE algorithm. Figures from official website

of MOLE[16]. (a) Haloalkane dehalogenase (PDB: 1CQW). (b) Carbonic Anhydrase (PDB:

3EYX).
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(a) Gramicidin (PDB: 1GRM) (b) Mechanosensitive channel (PDB: 2OAU)

Figure 3.2: Known channels computed by algorithm described by Lindow et al. Figures from

paper by Lindow et al.[14]. (a) Gramicidin (PDB: 1GRM). (b) Mechanosensitive channel

(PDB: 2OAU).



Chapter 4

BACKGROUND

Following section discusses definition of some important geometrical tools used by researchers

to find molecular channels and cavities in macromolecules. For this report let us define S to

be a set of points in Rd.

4.1 Simplices and Simplicial complexes

In geometry, a simplex is generalization of notion of a triangle or tetrahedron to arbitrary

dimensions.

As defined in Munkres[15] a k-simplex ∆T is convex hull of T, where T is affinely inde-

pendent set of points such that

T ⊂ S and | T |= k + 1 ≤ d+ 1.

Hence vertex is known as 0-simplex, edge as 1-simplex, triangle as 2-simplex and tetra-

hedron as 3-simplex. A face of ∆T is the convex hull of a non-empty subset of T. A face is

proper if subset is proper. We denote τ ≤ ∆T if τ is a face and τ < ∆T if it is proper face.

A simplicial complex is a finite collection of simplices C such that ∆T ∈ C and τ ≤ ∆T

implies τ ∈ C, and ∆T
1 ,∆

T
2 ∈ C implies ∆T

1

⋂
∆T

2 is either empty or face of both.

7



Chapter 4. BACKGROUND 8

Figure 4.1: Voronoi diagram of input points(in red)

4.2 Voronoi diagram and Delaunay triangulation

Delaunay triangulations are simplicial complexes which are used in many geometrical meth-

ods described in previous work. Voronoi diagrams are dual of Delaunay triangulations, see

Aurenhammer et al.[1] for detail discussion.

Voronoi cell of a point p ∈ S is the set of points in R for which p is closer than any other

point q ∈ S, i.e.

Vp = {x ∈ Rd| ‖x− p‖ ≤ ‖x− q‖ ,∀q ∈ S}.

Since boundary of Vp is formed by half planes between p and q ∈ S, Vp is convex polytope

in Rd. These polytopes meet each other at their faces forming the Voronoi diagram as shown

in Figure 4.1.

Weighted Voronoi cell or power cell of point q ∈ S is the set of points in Rd for which p is

closest weighted point, i.e

Vp = {x ∈ Rd| d(p, x) ≤ d(q, x),∀q ∈ S},

where d(p, x) = ‖x− p‖2 − wp and wp is weight of point p.

The Delaunay triangulation, Del S, is dual to the Voronoi diagram. Specifically, when-

ever two Voronoi cells share a common side then the edge connecting the two corresponding

points belongs to the Delaunay triangulation, and whenever three Voronoi cells share a com-

mon corner the triangle spanned by the three corresponding points belongs to the Delaunay

triangulation. These interactions are also captured by the nerve of the Voronoi diagram, which

is collection of subsets whose cells have non-empty common intersection, i.e.
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Figure 4.2: Delaunay triangulation of above Voronoi diagram

Nrv(V orS) = {X ⊆ V orS |
⋂
X 6= ∅}.

The Delaunay triangulation is geometric realization of nerve. The weighted case can simi-

larly be constructed and is called a weighted Delaunay triangulation or regular triangulation.

4.3 Alpha Shapes and Alpha Complexes

In this section we will review alpha shapes and alpha complexes and their weighted counter-

parts. The following paragraph, quoted from Edelsbrunner et al.[7], explains alpha-hulls and

alpha-shapes very intuitively.

“Think of R3 filled with Styrofoam and the points of S made of more solid ma-

terial, such as rock. Now imagine a spherical eraser with radius alpha. It is om-

nipresent in the sense that it carves out Styrofoam at all positions where it does not

enclose any of the sprinkled rocks, that is, points of S. The resulting object will be

called the alpha-hull. To make things more feasible we straighten the surface of

the object by substituting straight edges for the circular ones and triangles for the

spherical caps. The obtained object is the alpha-shape of S.”

Edelsbrunner et al.[?] discusses alpha shapes as follows. The eraser intuition discussed

above has a equivalent view that arises when we consider union of disks centered at a given

point. Let p1, pn be the point in S, Bi(α) be closed disk with center pi and radius α > 0, and

let U(α) =
⋃n
i=1Bi(α) be the union of disks. If x ∈ U(α) belongs to Voronoi cell Vi, it also

belongs to Bi(α). This implies Vi
⋂
U(α) is equal to Vi

⋂
Bi(α). Let Ri(α) = Vi

⋂
Bi(α),
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than realization of nerve of Ri(α) gives alpha complex Cα. Alpha-shape is given by union of

all simplices in alpha complex.

Now we generalize alpha complexes to weighted case. Given α ∈ R, let Bi(α) be closed

disk with center pi and radius (α2 +wi)
1/2. If α2 +wi < 0 than root is imaginary and Bi(α) is

empty. Similar to unweighted case consider intersection of union of disks and corresponding

power cells for given α, and obtain the weighted alpha complex using notion of nerve.

There are only finitely many alpha complexes Ci, which when ordered by inclusion of

simplices give rise to the notion of filtration of Delaunay triangulation, i.e.

∅ = C0 ⊂ C1 ⊂ C2..... ⊂ Cn = Del S



Chapter 5

MOLECULAR CHANNELS IN

MACROMOLECULES

5.1 Motivation

Previous approaches have following shortcomings:

1. CAVER[17] uses grid based path search method so user has to choose between accuracy

and performance.

2. MOLE[16] uses Voronoi diagram of atoms(taken as points) so they don’t take radius of

atoms in consideration because of which they cannot accurately find significant paths for

a given solvent size.

3. Lindow et al.[14] uses Voronoi diagram of spheres to find significant paths. Voronoi

diagram of sphere does not have a dual triangulation.

Regular triangulation and its dual weighted Voronoi diagram has been used in some popular

visual analysis tools like PyMol[4] for computing pockets, surface area and volume in proteins.

This motivated us to design an algorithm to find molecular channels using regular triangulation.

11
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5.2 Intuition

The intuition is that a given solvent molecule can only pass through any triangle in the regular

triangulation in Figure 2.1(a) by entering via an edge and exiting through another edge of that

triangle. So, the possible network of paths(path graph) through this regular triangulation is as

shown in Figure 2.1(b).

Similarly in 3D a given solvent molecule can only enter a tetrahedron in a regular triangu-

lation through a triangle and exit through a second triangle of that tetrahedron.

We use this idea to develop our algorithm and compute network of paths through a given

macromolecule, as described in Section 5.3 below. To find significant paths in a given macro-

molecule from the network of paths we use the same idea as that was used in MOLE[16], as

described in Section 5.4 below.

5.3 Algorithm to find network of paths through a given macro-

molecule

Input: Regular triangulation of atoms in a given macromolecule.

Output: Path Graph, Gpath = (V path, Epath) as a network of paths through the macro-

molecule.

Our algorithm has following steps:

1. Create Path Graph, Gpath = (V path, Epath).

2. Process Path Graph. Here the goal is to find maximum size of solvent allowed by each

edge, epath ∈ Epath and length of that edge.

In the following sections we will describe the individual steps of our algorithm in more

detail.
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5.3.1 Create Path Graph

Given a two-dimensional regular triangulation as shown in Figure 2.1(a). We can create a path

graph, Gpath = (V path, Epath) as shown in Figure 2.1(b). Each vertex in path graph, vpath ∈

V path corresponds to each edge in the regular triangulation. Create an edge, epath ∈ Epath

between any two vertices in path graph if there corresponding edges in the regular triangulation

belongs to same triangle in the regular triangulation.

Similarly given a three-dimensional regular triangulation of atoms in a macromolecule

DelW (S), we can create path graph, Gpath = (V path, Epath) as follows. Each vertex in path

graph, vpathi ∈ V path corresponds to each triangle, tdeli in the regular triangulation. If a triangle

, tdeli in the regular triangulation is on convex hull of macromolecule than mark corresponding

path vertex as boundary point. Create an edge, epathij = (vpathi , vpathj ) ∈ Epath between any

two vertices(vpathi and vpathj ) in path graph if there corresponding triangles(tdeli and tdelj ) in the

regular triangulation that belongs to same tetrahedron in the regular triangulation.

Therefore, if there are x tetrahedra in a 3-dimensional regular triangulation there exist 4x

vertices and 6x edges in corresponding path graph. Also Shewchuk et al.[18] proved that in

the worst case the number of tetrahedra of regular triangulation DelW (S) is O(n2), where

n =|S|. If the vertices in regular triangulation are uniformly or nearly uniformly distributed ,

the expected number of tetrahedra is nearly O(n). In case of macromolecules like proteins the

atoms are nearly uniformly distributed, hence number of vertices and edges in the path graph

are also O(n).

5.3.2 Process Path Graph

The goal of this step of our algorithm is to find the maximum size of solvent allowed by each

edge, epath ∈ Epath in the path graph, Gpath and the length of that edge.

To understand this step first we will consider the path graph of regular triangulation in

two-dimensions. Note that in a two-dimensional path graph there exist path edge between any

two edges of a triangle in regular triangulation, hence these two edges have a common vertex

in regular triangulation. Therefore we will iterate through each vertex in regular triangulation.
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It consists of following substeps:

1. Select an unvisited vertex v from regular triangulation. As shown in Figure 5.1 where

the red vertex is selected. Set selected vertex v as visited.

2. Find 2-ring neighbour vertices of the selected vertex in regular triangulation using a

breadth first search method. In Figure 5.1, light green vertices are 1-ring neighbours of

v whereas green and light green vertices are 2-ring neighbours of v.

3. Identify all triangles ti in regular triangulation that contains the selected vertex v. For

each triangle ti, we can identify edges eti1 and eti2 in triangle ti. Let epathi be the path edge

that pass between edges eti1 and eti2 . Now to find the maximum size of solvent allowed

by epathi (defined as sizemaxi ) and to find length of epathi (defined as leni) do the following

steps:

(a) Identify all the vertices in 2-ring neighbourhood which are in the sector formed by

selected vertex v as center and edges eti1 and eti2 . The sector is shown in yellow in

Figure 5.1. Selected vertex and identified vertices are shown in Figure 5.2.

(b) For each vertex vj in the sector, find the radius Rvj of the smallest circle touching

atoms at v and vj . Such circles are shown in blue in Figure 5.2.

(c) Store minimum ofRvj over all vj asRmin
i . Such a circle with radiusRmin

i is shown

in blue in Figure 5.3.

(d) RollCheck: Now, roll the circle with minimum radius,Rmin
i in the sector as shown

in Figure 5.3. While rolling check if the circle intersects any other atom in the

sector. The implementation of this step finds the rolled position of the circle with

minimum radius on each line segment between v and each vertex vj in the sector

as shown in Figure 5.3. At each rolled position, we check whether or not circle

intersects with any of the vertices in the sector. If it does than shrink its radius,Rmin
i

until there are no intersections. Therefore this step has running time complexity of

O(n2
s), where ns is the number of vertices in the sector.

(e) Set sizemaxi = Rmin
i and leni = length of arc of roll.
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Figure 5.1: 2-ring neighbour vertices(in light green and green) of selected vertex(in red)

Figure 5.2: Smallest circle touching atoms at selected vertex in red and each of the vertices in
sector. As described in Step 3b of Section 5.3.2.

4. If there are no unvisited vertex in regular triangulation exit, else goto Step 1.

Now we will consider the three-dimensional case. Note that in the three-dimensional path

graph there exist a path edge between any two triangles of a tetrahedron in a regular triangu-

lation. Hence these two triangles have a common edge in regular triangulation. Therefore we

will iterate through each edge in the regular triangulation.

1. Select an unvisited edge edel from regular triangulation.

2. Find 2-ring neighbour vertices of the selected edge in regular triangulation using a

breadth first search method.

3. Identify all tetrahedra tetdeli in regular triangulation that contains the selected edge edel.

For each tetrahedron tetdeli , identify triangles tteti1 and tteti2 . Let epathi be the path edge that
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Figure 5.3: Rolling of circle with minimum radius, Rmin
i in the sector as described in Step 3d

of Section 5.3.2.

pass between triangles tteti1 and tteti2 . Now to find the maximum size of solvent allowed

by epathi (defined as sizemaxi ) and to find length of epathi (defined as leni), do the following

steps:

(a) Identify all the vertices in 2-ring neighbourhood which are in the sector formed by

selected edge edel as center and triangles tteti1 and tteti2 .

(b) For each vertex vj in the sector and find the radius Rvj of the smallest sphere

touching atoms at edel and vj also called tangent sphere. We find tangent sphere

using method described in Langlet[10]. Tangent sphere to three atoms is shown in

Figure 5.4.

(c) Store minimum of Rvj over all vj as Rmin
i .

(d) RollCheck: Now, roll the tangent sphere with minimum radius, Rmin
i in the sector.

While rolling check if the tangent sphere intersects with any other atom in the

sector. The implementation of this step finds the rolled position of the tangent

sphere with minimum radius on each triangle formed by edel and each vertex vj

in the sector. At each rolled position, we check whether or not the tangent sphere

intersects with any of the vertices in the sector. If it does than shrink its radiusRmin
i

until there are no intersections. Therefore this step has running time complexity of

O(n2
s), where ns is the number of vertices in the sector.

(e) Set sizemaxi = Rmin
i and leni = length of arc of roll.
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Figure 5.4: Tangent sphere (in red) to three spheres (in gold). The four spheres have coplanar
centers.

4. If there are no unvisited vertex in regular triangulation exit, else goto Step 1.

5.4 Algorithm to find significant paths in a given macro-

molecule

Input: Path Graph, Gpath = (V path, Epath).

Input: Path vertex nearest to binding site.

Input(optional): Size of solvent molecule.

Output: Significant path(s) from path graph.

Our algorithm has following steps:

1. If solvent molecule size is given, remove all those path edges from path graph whose

sizemaxi is less than size of solvent else do nothing.

2. Assign weight, W (e) to each path edge in path graph as follows:

W (e) = len(e)/(size(e)2 + ε)

where len(e) is length of path edge and size(e) is radius of solvent of maximum size

allowed by the path edge and ε is a small number to avoid division by zero.
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3. Set path vertex nearest to binding site as starting point and apply Dijkstra’s shortest path

algorithm to search for the shortest path from starting point to path vertices marked as

boundary points.

4. To find next significant path, save the shortest path found in above step and give very

high weights to its edges. Now run the Step 3 again.

5. To find a set of n significant paths, iterate between Step 3 and 4 n times.



Chapter 6

ANALYSIS

In this chapter we will mention the analysis of our algorithm to optimize it and find accuracy

of results generated. The analysis is done on Intel Xeon CPU @2.00GHz.

6.1 Analysis of algorithm to find network of paths through

a given macromolecule

The algorithm mentioned in Section 5.3.2 in three-dimensional case to find the maximum

size of solvent allowed by each edge in path graph, Gpath checks for all possible intersections

between a solvent and atom in the molecule while passing from one triangle to another triangle

of each tetrahedra in a regular triangulation. These checks guarantees that each edge in path

graph allows a solvent molecule of size less than or equal to sizemaxi stored in Step 3e of the

algorithm.

The following analysis is done to find avoidable checks and steps done in the above algo-

rithm. We will refer the above mentioned algorithm as PPG1. We modify PPG1 for analysis

as shown below.

19



Chapter 6. ANALYSIS 20

6.1.1 Algorithm PPG2

Algorithm PPG2 is the same as PPG1 but it has lesser number of intersection checks in Step 3d.

In PPG2 at each rolled position we check whether or not the tangent sphere intersects with the

atom corresponding to vertex vj mentioned in Step 3d, whereas in PPG1 we check intersection

with all vertices in the sector. Therefore in PPG2, Step 3d has complexity of O(ns), where ns

is the number of vertices in the sector.

6.1.2 Algorithm PPG3

Algorithm PPG3 is same as PPG1, but here we do not compute the 2-ring neighbours of each

selected vertex as mentioned in Step 2 of PPG1. In Step 3a of PPG3 we have only those two

vertices of selected tetrahedron tetdeli which are not in selected edge edel.

This helps us to check whether finding 2-ring neighbour vertices of selected edge in Step

2 in PPG1 is necessary or not.

6.1.3 Algorithm PPG4

Algorithm PPG4 is same as PPG3 i.e. it doesn’t compute the 2-ring neighbour vertices and

further it doesn’t check for any intersections.

This makes PPG4 least conservative version of PPG1. We have mentioned this version of

PPG1 to compute the comparison with PPG1,PPG2 and PPG3.

6.1.4 Experiments

We perform the following tests on algorithms PPG1, PPG2, PPG3 and PPG4.

1. Test 1: This test has following steps.

(a) Given a macromolecule and solvent molecule size, run all versions of PPG1, and

compute processed path graph for each version of PPG1.

(b) Identify those edges in path graph which allows the given solvent molecule to pass

through.
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Dataset Solvent size(Å) PPG1 PPG2 PPG3 PPG4
1GRM 0.5 889 889 928 946
1GRM 1.0 741 741 785 799
1GRM 1.5 582 582 621 641
1GRM 2.0 454 454 496 506
1J4N 2.0 1682 1682 1932 2024
1J4N 4.0 809 809 916 1013

1CQW 2.0 1444 1444 1699 1804
1CQW 4.0 626 626 749 842
1BL8 2.0 2082 2082 2395 2534
1BL8 4.0 926 926 1075 1169
3EYX 2.0 2531 2531 2901 3087
3EYX 4.0 1041 1041 1198 1332
1K4C 2.0 3558 3558 4122 4400
1K4C 4.0 1527 1527 1766 1938
2R9R 2.0 11788 11788 13233 13861
2R9R 4.0 5980 5980 6629 7104
1OAU 2.0 12456 12456 14259 14959
1OAU 4.0 4960 4960 5659 6115
1OAU 6.0 2454 2454 2772 3201
2BG9 2.0 13837 13837 15755 16518
2BG9 4.0 4793 4793 5500 5883
2BG9 6.0 2472 2472 2852 3146

Table 6.1: Results of different versions of algorithm PPG1 as number of tetrahedra.

(c) Compute and print the number of tetrahedra in regular triangulation corresponding

to identified path edges in above step.

Test 1 is run on the following datasets Gramicidin(1GRM PDB), Nicotinic Acetylcholine

Receptor(2BG9 PDB) and PDB 1OAU. Table 6.1 shows the results.

2. Test 2: This test computes the number of intersections found while running different

versions of algorithm PPG1. Test 2 is run on the following datasets Gramicidin(1GRM

PDB), Nicotinic Acetylcholine Receptor(2BG9 PDB) and PDB 1OAU. Results are shown

in Table 6.2.
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Dataset PPG1 PPG2 PPG3 PPG4
1GRM 17084 17066 8814 0
1J4N 283118 282788 131093 0

1CQW 360597 360276 166049 0
1BL8 452244 451889 206358 0
3EYX 492573 492046 227843 0
1K4C 639357 638721 290105 0
2R9R 1778613 1776556 806995 0
1OAU 2189753 2186723 986485 0
2BG9 2381394 2379514 1072230 0

Table 6.2: Number of intersections found in different versions of algorithm PPG1. Number of
intersections in PPG4 is zero because it doesn’t check for any intersection.

Dataset Number of atoms PPG1 PPG2 PPG3
1GRM 184 0.55 0.52 0.11
1J4N 2241 8.91 8.53 1.46

1CQW 2806 11.39 10.76 1.89
1BL8 3489 14.01 13.44 2.27
3EYX 3845 15.67 15.03 2.53
1K4C 5003 20.17 19.37 3.28
2R9R 13659 56.47 54.56 9.1
1OAU 16647 69.38 65.14 10.91
2BG9 17923 74.94 71.73 11.81

Table 6.3: Running time of different versions of algorithm PPG1 in seconds: On Intel Xeon
CPU @2.00GHz.

3. Test 3: This test computes the running time of different versions of algorithm PPG1.

Figure 6.1 shows the running time of PPG1.

6.1.5 Conclusion

From Test1 and Test2 we can see that PPG1 and PPG2 compute approximately same results.

But Test3 shows that there is not much difference in there running time hence we will take

PPG1 as our final proposed algorithm.
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Figure 6.1: Plot of running times of PPG1: On Intel Xeon CPU @2.00GHz.

Dataset Number of atoms Solvent size (Å) Running time (in seconds)
1GRM 184 0.5 0.03
1GRM 184 1.0 0.02
1GRM 184 1.4 0.02
1J4N 2241 1.4 0.1

1CQW 2806 1.4 0.03
1BL8 3489 1.4 0.09
3EYX 3845 1.4 0.06
2OAU 16647 1.4 0.14
2BG9 17923 1.4 0.17

Table 6.4: Run time of algorithm to find significant paths in a given macromolecule as de-
scribed in Section 5.4 for different protein molecules: On Intel Xeon CPU @2.00GHz



Chapter 6. ANALYSIS 24

PPG1 has nearly linear running time as shown in Figure 6.1. It is know that in the worst

case the number of tetrahedra of regular triangulation DelW (S) is O(n2), where n =|S| [3].

However Shewchuk et al.[18] proved that if the vertices in regular triangulation are uniformly

or nearly uniformly distributed , the expected number of tetrahedra is nearly O(n). In case

of macromolecules like proteins the atoms are nearly uniformly distributed, hence number of

edges in the regular triangulation are also nearlyO(n). PPG1 finds and processes 2-ring neigh-

boring vertices of each edge in regular triangulation using a breadth first search method. Since

there are nearly constant 2-ring neighboring vertices for each edge in regular triangulation

therefore running time of PPG1 is nearly linear.

6.2 Analysis of algorithm to find significant paths in a given

macromolecule

In this section we analyze significant paths generated by algorithm discussed in Section 5.4,

which uses path graph generated from algorithm described in Section 5.3.

6.2.1 Intuition

Weighted alpha shapes have been used efficiently to compute volume, surface area, etc. of

macromolecule which mostly involves intersection among atoms. To solve problem related to

Euclidean proximity of atoms (like finding molecular channels) using weighted alpha shapes,

radii of atoms in macromolecule have to be appropriately changed so that the problem trans-

forms to one involving intersections among changed atoms.

From above mentioned intuition we can accurately find all accessible paths in a given

macromolecule for given solvent size as follows:

1. Increament radius of atoms by given solvent radius

2. Get alpha complex at alpha equal to zero.
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Dataset Solvent size(Å) Number of tetrahedra Accurate number of tetrahedra
identified using PPG1 found using alpha complex

1GRM 2.0 442 581
1CQW 2.0 1462 2333
1J4N 2.0 1694 2566
1BL8 2.0 2099 3210
3EYX 2.0 2525 3764
2OAU 2.0 12341 18321
2BG9 2.0 13835 20055

Table 6.5: Number of tetrahedra found using PPG1 and alpha complex.

3. Find all tetrahedra in regular triangulation which are not in alpha complex and does not

have 2 or more than 2 triangles in alpha complex.

6.2.2 Experimental Setup

We get tetrahedra corresponding to all accessible paths in a macromolecule for a given solvent

size as follows:

1. Increament radius of atoms by given solvent radius

2. Run PPG1 algorithm to get path graph.

3. Identify all those path edges which allows given solvent to pass through.

4. Find set of all tetrahedra in regular triangulation corresponding to identified path edges.

6.2.3 Conclusion

Table 6.5 shows results of Experimental setup described in above sections. We compared

tetrahedra in both cases and came to know that tetrahedra found using our algorithm (PPG1) are

subset of tetrahedra found using alpha complex. This conforms that results from our algorithm

are consistant with actual network of paths generated by using alpha complex.
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6.3 Results

This section shows known molecular channels found using our algorithm mentioned in Section

3.1. We have mentioned the minimum number of iterations of Steps 3 and 4 in algorithm to

find significant paths( described in Section 5.4) containing the known molecular channels.

(a) Haloalkane dehalogenase (PDB: 1CQW) (b) Carbonic Anhydrase (PDB:3EYX)

(c) Gramicidin (PDB: 1GRM) (d) Mechanosensitive channel (PDB: 2OAU)

Figure 6.2: Known channels computed by our algorithm (a) Haloalkane dehalogenase (PDB:

1CQW), 1 iteration. (b) Carbonic Anhydrase (PDB: 3EYX), 1 iteration.(c) Gramicidin (PDB:

1GRM), 2 iterations. (d) Mechanosensitive channel (PDB: 2OAU), 8 iterations.
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VISUALIZATION FEATURES

We have added following features to our tool made in collaboration with other students.

1. Visualization of tetrahedra in regular triangulation corresponding to significant paths

edges computed by our algorithm. Tetrahedra give better visualization of significant

path volume as compared to skin surfaces. As shown in Figure 7.2(a).

2. Visualization of skin surfaces of significant paths. Skin surfaces describe the inner sur-

face of molecule enclosing the paths. Skin surfaces are constructed by taking each path

vertex on a significant path as sphere having radius equal to tangent sphere to atoms in

triangle of regular triangulation corresponding to that path vertex. We used implemen-

tation based on work of Cheng and Shi[2]. As shown in Figure 7.2(b).

3. Cut section of given macromolecule at arbitrary plane. For better visualization of signif-

icant paths. As shown in Figure 7.2(a), 7.2(b) and 7.2(c).

4. Graph to show size of solvent allowed by path edges along a significant path. It helps

the user to identify bottlenecks in the significant paths. As shown in Figure 7.2(d).

5. Graph to show electric field along a significant path. It helps the user to analyze the

electrostatic properties of the significant path. As shown in Figure 7.2(e).

6. Individual path vertex on a significant path as sphere having radius equal to tangent

27
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(a) Max solvent radius = 0 (b) Max solvent radius = 3.01

Figure 7.1: (a) Path Graph for solvent of radius atleast 0. (b) Path Graph for solvent of radius
atleast 3.01 .

sphere to atoms in triangle of regular triangulation corresponding to that path vertex. As

shown in Figure 7.2(c).

7. Filter and visualize the path graph based on the size of the solvent as shown in Figure

7.1. We can change the size of the path graph based on the size of the solvent molecule.

This reduces processing time to find significant paths by algorithm described in section

5.4.
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(a) Path tetrahedra (b) Skin surface (c) Path Spheres

(d) Max solvent graph (e) Electric field graph

Figure 7.2: (a) Tetrahedra corresponding to significant path edges. Cut section of PDB 1BL8.
(b) Skin surface of significant path. Cut section of PDB 1BL8. (d) Graph of solvent size al-
lowed by path edges along a significant path of Gramicidin (PDB 1GRM). (d) Graph of electric
field along a significant path of Gramicidin (PDB 1GRM). (c) Tangent sphere corresponding
to path vertices of significant paths of PDB 2OAU cut section.
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CONCLUSIONS AND FUTURE WORK

The following section mentions key contributions of our algorithm.

8.1 Key Contributions

1. This algorithm efficiently computes path graph from regular triangulation. Path graph is

unique for a given macromolecule. Hence path graph can be stored and used to compute

significant paths.

2. This algorithm uses regular triangulation of a macromolecule as input, hence we get a

volumetric representation of paths. This gives us a unique advantage of viewing signif-

icant path volume as tetrahedra. From tetrahedra it is easy to compute surface area and

volume of significant paths.

3. This algorithm can be used as plugin in already existing tools which uses regular trian-

gulation (or its dual weighted Voronoi diagram) of macromolecules for visual analysis

like PyMol[4].

30
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8.2 Limitations and Future work

This algorithm computes conservative estimate of significant paths as concluded in Section

6.2.3, so it may miss some paths.

In future this algorithm can be parallelized and implemented as plugin in molecular visu-

alization systems like PyMol[4].
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