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Abstract The Morse-Smale complex is a topological data structure that represents
the behavior of the gradient of an input scalar field. Recent years have witnessed
a significant number of applications that use this data structure for visualization
and analysis of data from various scientific domains. However, these applications
have required significant expertise in the implementation of algorithms. This poten-
tially makes such analysis inaccessible to a large audience. In this paper we present
open source software modules for the computation, analysis, and visualization of
scientific data using the Morse-Smale complex. The modules, named pymstri and
pyms3d, are intended for domains represented using 2D triangle meshes and 3D
structured grids respectively. The software is designed to significantly reduce the ef-
fort required to use Morse-Smale complex based analysis. Also, the software lever-
ages modern multi-core CPU and GPU architectures for computational efficiency.
We demonstrate the usefulness via a case study to visually analyze and interactively
segment the eye of the Hurricane Isabel simulation dataset. In particular, we high-
light the ability to couple the visual analysis and the computation with ParaView,
a popular general purpose visualization tool. The code is is available at the project
website http://vgl.serc.iisc.ernet.in/mscomplex/.
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1 Introduction

In recent years, topological methods have gained wide popularity for scientific data
analysis. In particular, gradient based analysis and the Morse-Smale complexes have
been extensively applied for a multitude of data-analysis and visualization tasks
[9, 15, 16, 20, 29, 31, 41]. A key reason for the success of Morse-Smale complex
based analysis is that it enables a translation from scalar function data into topol-
ogy and gradient based features. It is therefore no surprise that a lot of recent work
has focused on various aspects of the Morse-Smale complex such as its efficient
computation [17, 19, 32, 34, 38, 39], feature directed visualization [22], user de-
fined feature preservation [18, 21], etc. In most of the above applications of the
Morse-Smale complex, the software implementations are not open source. Also, the
software is often developed as standalone a executable that does not easily interface
with other large software tools.

Related Work: complexes were first introduced for the analysis of dynamical
systems by Smale [40]. The first computational algorithms were described by Edels-
brunner et al. [12] and Bremer et al. [7], where the definition of the 2D Morse-Smale
was extended to triangulated domains resulting in the Quasi-Morse-Smale com-
plex. Other methods that develop this notion for 3D are available in the literature
[11, 23, 24, 25]. In recent years, many algorithms based on Forman’s [14] discrete
Morse theory have become popular [17, 19, 34, 38, 39]. A primary reason for this
is the combinatorial robustness of these algorithms, which greatly simplifies imple-
mentation effort. However, to the best of our knowledge, source code implemen-
tation of these methods are only available for Sousbie et al. [41]. A crucial aspect
in Morse-Smale complex based analysis is in its toplogical simplification and sub-
sequent analysis. Edelsbrunner et al. describe the notion of topological persistence
[13] and its application to Morse-Smale complex simplification in 2D [12]. Most of
the implementations described in the above literature describe some form of sim-
plification using persistence. However, in many applications [15, 20, 41] successful
feature identification requires simplification using other sources of data as well as
domain specific criteria. In these cases the effort needed to apply the analysis is de-
pendent on the ease with which one interfaces with the Morse-Smale complex data-
structure. More generally, source code implementation for Reeb graphs [10] contour
trees [8] and persistent homology [5, 4] have become available over the years. These
packages are most readily usable as standalone packages, though most offer access
to their internal data structures only in their native programming language. Python
[35], being particularly suited for high level scripting operations, is very often avail-
able as the de-facto scripting interface in a many large software tools. A primary
reason for this is that Python is a mature interpreted language which allows for easy
runtime loading/unloading of modules. A few examples of tools that offer Python
interfaces include Pymol [36], VMD [27], Chimera [33], ParaView [26], VTK [37],
Blender [6].

Contributions: In this paper, we describe a Python-scriptable Morse-Smale
complex computation and analysis package. The package consists of two modules,
named and , which contain implementations for 3D structured grids and 2D trian-
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gle meshes. The modules implement efficient algorithms for Morse-Smale complex
computation [39, 38, 34] and hierarchical feature analysis [7, 22]. Furthermore,
the implementations leverage the OpenCL and OpenMP frameworks for parallel
computation. Access to the combinatorial structure and geometric elements of the
Morse-Smale complex are granted through a Python interface. We demonstrate the
usefulness of the software via a case study. We interactively segment the Hurricane
Isabel Dataset [42] to highlight the interactivity and the ease of use. The pyms3d
module is used to develop a programmable filter which is loadable in ParaView
[26]. The extracted features may be changed and updated from within the ParaView
runtime environment to drive interactive feature based visual analysis. This case
study is demonstrated via a video hosted at https://youtu.be/UX1q9gI2DEk.

2 Background

In this section, we introduce the necessary background relevant to the definition of
the Morse-Smale (MS) complex.

Morse theory and the MS complex: Morse theory studies critical points of
smooth scalar functions defined on manifolds [30]. Given a smooth scalar function
f : Rn → R, its critical points are points where the gradient, the vector of first
order partial derivatives ∇ f (x) =

(
∂ f
∂x1

(x), ∂ f
∂x2

(x), . . . , ∂ f
∂xn

(x)
)

, is identical to zero.
A critical point is non-degenerate if the Hessian, the matrix of second order partial
derivatives, is non-singular. The function f is said to be Morse if all its critical
points are non-degenerate. The index of a critical point is the number of negative
eigenvalues of the Hessian matrix. An integral line is a maximal curve in Rn whose
tangent at every point is collinear with the gradient of f at that point. The limit
points of integral lines, t→±∞, are the critical points of f .

The set of all integral lines that share a common source (destination) p, is called
the ascending manifold (descending manifold) of p. The Morse-Smale (MS) com-
plex is a partition of the domain into cells formed by the collection of integral lines
that share a common source and a common destination. The combinatorial structure
is a graph, where the nodes are critical points and edges are arcs between them if
there is an integral line that connects them and their indices differ by one.

Discrete Morse theory: Forman [14] introduced discrete Morse theory to study
the topology of cell complexes. A d-cell αd is a topological space homeomorphic
to a d-ball Bd = {x ∈ Rd : |x| ≤ 1}. Lower dimensional d-cells include vertices,
edges, triangles/quads, and tetrahera/cubes. A cell complex K is a collection of cells
where the set of cells incident on the boundary of a cell are also in K, and two cells
intersect only along a single common boundary cell. Examples of cell complexes
include 2D triangle meshes and 3D cubical complexes (see Figures 2(a) and 2(b)).
A function f : K→ R is said to be a discrete Morse function if for all d-cells α in
K, there exists no more than one incident higher dimensional cell β so that f (α)≤
f (β ), and no more than one incident lower dimensional cell γ exists so that f (γ)≤
f (α). A pairing between two incident d-d + 1 cells, α-β , so that f (α) ≥ f (β ) is
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called a discrete vector. A V -path is a sequence of unique d-d +1 discrete vectors,
αd

0 ,β
d+1
0 ,αd

1 ,β
d+1
1 , . . . ,αd

r ,β
d+1
r ,αd

r+1, so that every d + 1 cell is incident on the
next d-cell. A discrete gradient field is a collection of V -paths without any non-
trivial loops. Acyclic V -paths correspond to the notion of integral lines of Morse
functions. A cell that is not paired is called a critical cell and is analogous to the
notion of a critical point. Ascending / descending manifolds and the combinatorial
structure are similarly defined for discrete Morse functions. Figure 2(c) shows an
example of the combinatorial structure of the Morse-Smale complex defined on a
cell complex using discrete Morse theory.

Fig. 1 (left) The combinatorial structure of the Morse-Smale complex of a function with three
maxima. The critical points are shown as spheres, blue for minima, yellow for saddles, and red
for maxima. The arcs are shown as gray tubes. (right) Two cancellation operations applied to the
Morse-Smale complex eliminate two maximum saddle pairs connected to the central maximum.
Each cancellation operations re-routes arcs from the maxima connected to the canceled saddle to
the saddles connected to the canceled maximum. The two cancellations result in two successive
versions of the Morse-Smale. This sequence of versions is referred to as the hierarchical Morse-
Smale complex.

Topological Cancellation and the Hierarchical MS complex: A topological
cancellation is a process of removal of a pair of index i-i+ 1 critical points p-q
that are singularly connected in the combinatorial structure [12]. The combinatorial
structure is modified so that all other index i+ 1 critical points connected to p are
connected to all other index i critical points connected to q. The ascending (descend-
ing) manifold of p (q) is merged with the ascending (descending) manifolds of all
other i (i+ 1) critical points connected to q (p). Topological persistence [12] mea-
sures the importance of a pair of critical points. Pairs of critical points are canceled
in increasing order of its persistence. As one iteratively applies the above opera-
tions to simplify the MS complex, each application results in a new combinatorial
and geometric version of the MS complex. This sequence of MS complex versions
is referred to as the hierarchical MS complex, where each version is indexed by its
position in the sequence. Selecting appropriate versions for feature analysis is often
challenging and thus it is desirable to try multiple versions before selecting one.
Figure 1 shows an example of a Morse-Smale complex along with two cancella-
tions applied to it to generate a hierarchical MS complex with three versions in the
sequence.
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3 Data representation and Algorithms

We now describe the data structures and algorithms that are implemented in the
software package. We first describe how the data over 2D surfaces and 3D grids are
represented. Next, we describe the data structure used for the Morse-Smale com-
plex. Finally, we briefly describe the discrete Morse-Smale complex computation
algorithm and the construction of the Hierarchical Morse-Smale complexes.

Data Representation

Cells of the underlying domain are represented using unique identifiers. This is rel-
evant when querying the geometry of the Morse-Smale complex. The data represen-
tation of the Morse-Smale complex is common to both pymstri and pyms3d. This is
relevant for analysis of the combinatorial structure of the Morse-Smale complex.

(a) (b) (c)

Fig. 2 Data representation. (a) In 2D triangle complexes, each cell in the complex is identified by
a unique integer ID. (b) A 3D structured grid is interpreted as a cubical complex. Each cell in the
complex is uniquely identified by the centroid of its Cartesian coordinate scaled by two. (c) The
Morse-Smale complex is represented as a graph whose nodes are critical points and arcs are edges
between them. Each critical point is given a unique integer identifier. For each critical point, the
lists asc and des contain the ID’s of the ascending and descending critical points connected to it.
Similarly, for each critical point, the lists asc geom and des geom contain the cell identifiers of
ascending and descending cells from the underlying domain, (shown in (a)).

2D surfaces in pymstri: In the implementation of pymstri, a triangle mesh rep-
resenting the surface is stored using the edge-facet data structure [28]. Triangle
meshes are assumed to be available as a set of vertices and a set of triangles where
each triangle specifies three indices into the list of vertices.

3D structured grids: The structured 3D grid domain is interpreted as a cubical
cell complex whose cells are vertices, edges, quads, and cubes. The cells of the do-
main are implicitly represented using the Cartesian coordinates of their centroids as
identifiers. Each cell is uniquely identified using a tuple with three integers. We scale
the coordinates by two so that the interleaving cells, namely edges, faces, and cubes,
also obtain integral coordinate values at their centroids. Queries for facets / cofacets
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are therefore implicitly computed taking into consideration the boundary conditions
imposed by the grid. These queries use integer arithmetic instead of floating point
arithmetic as a consequence of the scaling described above. The center panel in
Figure 2(b) shows a simple structured grid interpreted as a cubical complex.

Morse-Smale complex representation: The Morse-Smale complex is repre-
sented as a graph whose nodes represent critical points of the Morse-Smale com-
plex and edges represent arcs. Let M denote the Morse-Smale complex. Each criti-
cal point is identified by a unique integer identifier. M stores per-vertex information
such as the function and index of the critical point. The adjacencies between crit-
ical points are maintained in a pair of lists, one for the ascending and one for the
descending adjacencies. In 2D, each list consists of a list critical point identifiers.
In 2D, each critical point may be incident upon another via at most two arcs. In 3D,
however, there may be arbitrarily more. Hence, each entry in the list comprises of
a tuple, where the first value identifies the incidence relation, and the second value
identifies the multiplicity. The ascending and descending geometry of each critical
point is maintained in a pair of lists. Each list consists of a list of cell identifiers
which identify cells of the underlying domain. The right panel in Figure 2(c) shows
a simple Morse-Smale complex representation with the adjacency and geometry
data.

Algorithms

For computing the discrete gradient field, we use the algorithm by Robins et al. for
pymstri as it results in the fewest spurious critical points. For pyms3d, we use the
algorithm by Shivashankar et al. [38] as it is implementable in massively parallel
architectures using GPUs. Though it results in more spurious critical points, the
trade-off is acceptable in terms of the efficiency offered by GPUs. We use the al-
gorithms described by Shivashankar et al. [38] for efficient traversal of the gradient
field on the CPU and GPU. A full performance evaluation of the above algorithm
for 2D and 3D structured grids is available by Shivashankar et al. [39, 38]. For
the hierarchical Morse-Smale complex, we directly implement the cancellation and
anti-cancellation operations described by Bremer et al. [7]. Cancellations may be
scheduled based on topological persistence [13]. Alternatively, cancellations may
be specified explicitly and performed sequentially via the Python interface. To tra-
verse the combinatorial structure of the hierarchical Morse-Smale complex, the list
of cancellation pairs are stored and the cancellation / anti-cancellation operations
are repeatedly applied using this list to obtain the desired level in the hierarchy. We
employ the merge dag [22] data structure for efficient geometry queries from the
hierarchical Morse-Smale complex.
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4 Design and implementation

In this section, we briefly discuss design and implementation issues of the above
data structures. The above described algorithms are implemented using C++. The
code is extensively parallelized to exploit multi-core CPUs when available. This
is done using the OpenMP framework, which has the advantage of requiring only
compiler directives to concisely indicate shared memory parallel loops and sections.
The discrete gradient algorithm as well as gradient field traversals for extrema in
pyms3d are implemented using the OpenCL framework. The implementation selects
the GPU when available. If a GPU is unavailable, it runs the OpenCL code on the
CPU.

The C++ implementations are made available as Python modules using the Boost
Python framework [3]. Both modules expose a Python class representing the Morse-
Smale complex. The implementation makes extensive use of the NumPy[2] module
to enable efficient passing of data arrays from C++ runtime objects to the Python
environment. This module is easily available in most Python installations and its
C++ bindings are made available by the Boost NumPy project [1]. Table 1 shows
a subset of methods that are exposed to the Python Interface along with a brief
description.

The implementations allow for computation of the Morse-Smale complex, query-
ing for the combinatorial structure, querying for the ascending and descending mani-
folds of the critical points, generating a hierarchy (either by persistence or by a user
defined sequence using the cancel pair call), and querying the combinatorial and
geometric structures at different levels of the hierarchy.

We now discuss the functions listed in Table 1. The interface can be broadly clas-
sified into three groups, namely computation functions, simplification, and query
functions. The first two groups primarily alter the state of the Morse-Smale com-
plex. Therefore, they involve minimal overhead in terms of interfacing with Python
as they simply reroute the calls to C++ implementation. The third group gener-
ally involves data copying overheads via the Boost NumPy [2] array API. The first
group comprises of the computation functions that compute the Morse-Smale com-
plex and collect the geometry associated with its critical points. The calls to com-
pute bin, compute arr and compute off, detailed in Table 1, compute the combinato-
rial Morse-Smale complex. In many applications, either the combinatorial structure
suffices or the geometry is desired after some pre-simplification. The call to col-
lect geom collects the Morse-Smale complex geometry at the current hierarchical
version. Optionally, the user may choose to only collect the ascending or descend-
ing geometry of critical points with a given index.

The second group of functions may be used to simplify the Morse-Smale com-
plex. The primary function here is the cancel pair routine which cancels a given pair
of critical points as long as the cancellation is permissible. Each cancellation results
in a new hierarchical version of the Morse-Smale complex. Due to the popularity of
the persistence hierarchy, the call to simplify pers is provided to generate a persis-
tence hierarchy so that arcs with a specified threshold are simplified. This call may
also be supplied with a number of extrema that are desired to be retained. After some



8 Nithin Shivashankar and Vijay Natarajan

simplification, one may obtain the earlier versions of the Morse-Smale complex us-
ing set hversion. For instance, one may obtain the Morse-Smale complex prior to
two simplifications by using the call msc.set hversion(msc. get hversion()-2).

The third group of functions involve providing data pertaining to the Morse-
Smale complex via the NumPy [2] array module. This is designed as a copy only
mechanism for two reasons. First, NumPy is a very popular scientific computation
API which eases further computations and interfacing with other tools, such as Par-
aView’s Python API (see Listing 1 for example). Second, the memory management
is eased by relinquishing the returned array objects to the Python runtime as opposed
to maintaining the same in the C++ runtime. The list of critical points in the current
hierarchical version, optionally of a given index d, may be obtained as an array of
integer identifiers via the call to cps([d]). The list of ascending/descending critical
points connected to a given critical point i may be obtained by the asc(i)/des(i) calls.
In 3D, each entry in the returned list is a pair, where the first is the ID and the sec-
ond is the multiplicity of the connection. In 2D, multiple entries are simply repeated
as the multiplicity is at most two. The ascending/descending manifold of a given
critical point i may be obtained using the asc geom(i)/des geom(i) calls. For a given
critical point of index d, these methods return an array containing d-cells of gradient
pairs that originate/terminate at i. By default, this set is constructed for the current
hierarchical version of the Morse-Smale complex object. The ascending/descending
manifold may also be obtained at a given hierarchical version n without altering the
current hierarchical version by using the merge dag data-structure. Note that non-
empty geometry can only be returned if a prior call to collect geom was made at
a hierarchical version lower than n. For pyms3d, each cell is represented by a tu-
ple of indices. In the case of ascending manifolds of 1-saddles and 2-saddles, the
indices index into a list of vertex coordinates, which may be obtained by the call
to get primal points. Analogously, for ascending manifolds of saddles, the indices
index into a list of cube coordinates obtained via the call to get dual points. For
minima, as their ascending manifolds form a partition on the set of vertices, the
indices index into the list of vertex coordinates. Analogously, for maxima, the in-
dices index into a list of cube coordinate, i.e. the cube centroids. For pymstri, an
analogous output form is supported. Additionally, the indices discussed above re-
spect the ordering of triangles and vertices given as the input to the computation.
Other utility functions to query per-critical point information, such as the index and
function value of critical points, as well as save/load the computed data from/to the
file-system are also available.

5 Case study: Interactive Visual Feature analysis

In this section, we present a case study, where the Morse-Smale complex based
analysis is coupled with the ParaView [26] visualization package. ParaView of-
fers a Python programmable interface to its visualization pipeline. We apply the
Morse-Smale complex to perform hierarchical segmentation of a simulation of the
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Method Brief description
compute off( f ) Computes the mscomplex of a triangle mesh and scalar function given

in a file f
compute bin( f ,s) Computes the mscomplex of a structured grid. Scalar function is given

as 32-bit floating point binary file f in fortran order. Grid size is given
in the tuple s.

compute arr(a) Compute the mscomplex of a structured grid. Scalar function is given
as 3d NumPy array a. Internally, data is converted to single precision
(32-bit) floating point values.

collect geom([d,dir]) Collects the [(dir =) Ascending/Descending] geometry of all [d-] criti-
cal points in the current hierarchical version.

get hversion(n) /
set hversion(n)

Gets/Sets the hierarchical version of the Morse-Smale complex.

cancel pair(p,q) Cancels a pair of singularly connected unpaired critical points p and q.
simplify pers(t) Simplifies the Morse-Smale complex upto persistence threshold t.
cps([d]) Returns a list of ids of active critical points [with index d].
des(i) /asc(i) Returns a list of descending/ascending critical points connected to i.
des geom(i,[n]) /
asc geom(i,[n])

Returns descending/ascending manifold of the critical point i [in the nth
hierarchical version].

get primal points(),
get dual points()

Returns the coordinates of 0-dimensional cells of the primal/dual cell
complex

cp func(i), cp index(i),
etc.

Returns the per-critical point information such as the function value, pair

get hversion pers(t) Returns hierarchy version number where pairs with persistence t are
eliminated.

save( f )/load( f ) Save/load all data to/from file f

Table 1 A subset of the methods available to an mscomplex object created by the modules pyms3d
and pymstri. Optional arguments to the methods are shown indicated in square braces ([. . .]).

hurricane Isabel. Hurricane Isabel was a hurricane that struck the coast of Florida,
USA, in September 2003. The simulation dataset was made available by Wang et
al., for the 2004 IEEE Visalization contest [42]. The simulation is available as 32-bit
floating point values on a 500× 500× 100 3D structured grid. This dataset is well
understood in visualization literature and therefore helps illustrate the ease of fea-
ture analysis and visualization using the software. We begin by simply computing
the Morse-Smale complex of the wind-speed field. Listing 1 shows code to generate
the segmentation data using pyms3d. Figure 3 shows the volume segmentation using
a persistence threshold of 0.05.

Next, we identify the highest finite-persistent minimum and segment its corre-
sponding ascending manifold. This is done by simplifying using persistence till only
two minima remain. Further simplification eliminates the desired minimum. Since
the object is cached during runtime, it may be retrieved without re-computation for
these operations as shown in Listing 2. Using the minimum representing the eye,
the function value restricted to the ascending manifold of the desired minimum is
generated.

The above listings are demonstrated in a video hosted at
https://youtu.be/UX1q9gI2DEk, where they are plugged into ParaView’s programmable
filter. In particular, changes to the persistence threshold to visualize the eye at differ-
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1 import pyms3d, numpy
2

3 X,Y,Z = (500,500,100)
4 msc = pyms3d.mscomplex() # Create the object.
5 msc.compute_bin("Speed03.bin",(X,Y,Z)) # Compute from bin file.
6 msc.simplify_pers(thresh=0.05) # Simplify.
7 msc.collect_geom(1,0) # Collect the asc geom
8 # of 0 index cps.
9 ids = numpy.empty([X*Y*Z],numpy.int32) # Array to hold ids.

10 for m in msc.cps(0): # For each minima m,
11 ids[msc.asc_geom(m)] = m # set id’s of vert’s
12 # in asc of m to m.
13 setattr(pyms3d,"msc",msc) # cache the object.
14

15 # pass the ids array to ParaView (Code omitted for brevity).

Listing 1: Code for segmenting the Isabel dataset using the pyms3d module.

Fig. 3 Segmenting the wind speed field in 3rd time-step of the Isabel simulation. (a) A volume
visualization of the wind speed field. The eye is distinctly discernible as a low wind speed region
enveloped by high wind speed regions. The height field representing the land and sea regions with
appropriate colors is shown. (b),(c),(d), and (e) Segmentation of the scalar field at four equally
spaced z-slices using a persistence threshold of 0.05, generated using Listing 1. The distinctive
structure of the eye is retained in the lower z-slices (b) and (c), which is less discernible in the
higher slices (d) and (e).

ent hierarchical versions is demonstrated. These modifications are made at runtime
and the visualization updates occur interactively. The video demonstrates the exe-
cution of the above listings on a HP xw8600 workstation with 8 CPU cores, 8GB
RAM, and Nvidia 260 GPU that has 895MB VRAM. The time taken to compute
the Morse-Smale complex and generate the visualization using Listing 1 is approx-
imately 30 seconds. The time to update the visualizations using Listing 2 is under
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1 import pyms3d, numpy
2

3 msc = getattr(pyms3d,"msc") # get the cached msc object.
4

5 if not hasattr(pyms3d,"eye"): # if ’eye’ is not in cache
6 msc.simplify_pers(nmin=2) # simplify until 2 minima survive
7 m1,m2 = msc.cps(0) # get the 2 minima
8 msc.simplifiy_pers(nmin=1) # simplify the penultimate minimum
9 m, = msc.cps(0) # get the surviving minimum

10 e = (m1 if m == m2 else m2) # the required minimum is the other
11 setattr(pyms3d,"eye",e) # cache the crit. pt. id of eye.
12

13 e = getattr(pyms3d,"eye") # get crit. pt. id of eye
14

15 v = msc.get_hversion_pers(thresh=0.018) # change hier. version
16 msc.set_hversion(v)
17

18 ag = msc.asc_geom(e) # id’s of verts in e’s asc mfold
19

20 fns = numpy.fromfile("Speed03.bin",numpy.float32) #read scalars
21

22 ag_fn = fns[ag] # save func. values at eye
23 fns[:] = -1 # set value everywhere to -1
24 fns[ag] = ag_fn # set scalar value only at eye.
25

26 # pass the fns array to ParaView (Code omitted for brevity).

Listing 2: Code for extracting the id of the minimum representing the eye of the
hurricane from the Morse-Smale complex object computed and cached in Listing 1.
The corresponding ascending manifold region is segmented and the scalar values
within this region is volume rendered in Figure 3.

1 second. A more detailed study of the performance of the efficient computation
algorithms is presented by Shivashankar et al.[39, 38].

Due to the efficient computation, as well as the interactive visual analysis, List-
ing 2 was used for multiple time steps. Figure 4 shows the wind-speed restricted to
the eye using this simultaneous visualization setup. The transfer function is chosen
to highlight the low speeds within the eye.

We observe the performance of a few of the crucial methods over 50 execu-
tions of Listing 1. The mean execution time of compute bin with OpenCL on the
GPU is 12.99s (std1=0.1s). The same method deployed on the 8-core CPU has a
mean execution time of 52.31s (std=0.916s). For both invocations time taken for
the call to transition from Python to the C++ runtime had a mean of 2.28× 10−3s
(std=1.17× 10−4s). The transition time for other function calls had similar tim-
ings and hence we do not consider it to be a performance issue. The call to col-
lect geom has a mean time of 1.45s (std=0.082s) with the GPU deployment and

1 The standard deviation is abbreviated as std
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3.06 (std=0.052s) with the CPU deployment. The total time taken for all calls to
asc geom in Listing 1 had a mean of 0.46s (std=0.013s) over 50 executions. The
method has three steps. First, the geometry representing the ascending manifold
at a given hierarchy is computed using the merge dag. Second, the data is con-
verted from cell identifiers to vertex indices. Third, a NumPy array is allocated, the
data is copied to it, and returned. The mean (and variance) for each of the above
steps is 0.34s (std=0.0027), 0.12s (std=0.0113), and 0.0013s (std= 4.65× 10−5).
From the above timings, we conclude that both the Python call transfer overhead as
well as data copy overheads are negligible compared to the method timings. Also,
the comparison of the CPU and GPU timings reaffirm the earlier experimental re-
sults [39, 38].

We also profile the memory usage of Listing 1 using both the CPU and GPU
deployments. We super-sample the dataset using bilinear interpolation to gener-
ate a sequence of datasets, where the number of points along each dimension are
increased by 10%, 20%, upto 100%. In the CPU deployment on the machine de-
scribed above, we observe that the maximum physical memory used is 6 GB for a
1000× 1000× 200 sized version of the dataset. In the GPU deployment, as there
is no virtual memory provision, we observe failures in memory allocation for a
dataset sized 550× 550× 110. For this dataset, we require a byte buffer of size
1099×1099×219 (252MB) to store the gradient information of all cells. The GPU
device used does not allow individual buffer sizes beyond 224MB, even though the
GPU has a 895MB VRAM. A detailed analysis of this experiment is available in the
project website.

Fig. 4 Visualizations of multiple time-steps of the eye of the Isabel simulation segmented using the
Listing 2. Due to the efficient implementation of computation and filtering, the above Listings can
be used for multiple time-steps in the same instance of ParaView for interactive visual identification
of appropriate persistence thresholds.
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6 Conclusions

In this paper, we have presented an efficient implementation of Morse-Smale com-
plex based algorithms for visual analysis. We demonstrated its versatility as a com-
putation and a visual analysis tool by plugging into ParaView to generate visualiza-
tions of the Hurricane Isabel dataset. This implementation includes state of the art
algorithms for computation of Morse-Smale complexes as well as implementations
of algorithms for hierarchical analysis.
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