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Abstract

Here goes your crisp little abstract. The challenges faced in visualization using machine learn-

ing techniques are - the utilization of the black box models in interpreting the model behaviors

and the growth in computing produced millions of datasets that needed techniques to handle it.

In this, we used the scalable solution to explore and analyze the high - dimensional functions

encountered in scientific data analysis. We tried the interactive exploration of the topological

and geometric aspects of the high-dimensional data by combining the neighborhood graph con-

struction, corresponding topology computation, and data aggregation. We used the NDDAV

– N-Dimensional data analysis and visualization. It is an interactive tool combination of di-

mension reduction, clustering, neighborhood graphs, and topological analysis. The extremum

graphs become important in topology, as they allow for the dimensionality reduction and ex-

ploratory analysis of high dimensional scalar fields while preserving the geometric structure.

Mostly the extrema are the exciting features of scalar fields, making the extremum graphs an

appealing choice for high-dimensional analysis. We provided two use cases from computation

biology and high energy physics to show how this setup have produced the findings similar to

the other method in both the fields.
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Chapter 1

Introduction

This chapter describes the goal and motivation for the project.

1.1 Motivation

Topological analysis has developed into a crucial tool in all areas of scientific study. A lot

may be learned about the inner workings of many natural events from the topology of scalar

fields. Scalar fields can be studied using a variety of methods, including extremum graphs,

Morse-Smale complexes, and contour trees. Each of these abstractions offers several angles

from which to see and engage with the same scalar field.

Extremum graphs have emerged as one of the most popular techniques in the topological analy-

sis community. While maintaining extrema connection, it offers an abstract yet understandable

representation of the underlying scalar field. This fundamental characteristic of extremum

graphs makes them a very useful tool with a wide range of applications. For instances where

many intriguing properties of a scalar field are extrema related, use feature tracking.

A popular tool for topological analysis is now the topological spine. It is the extremum graph

in its extended form. An extremum graph can be enhanced with geometric data such as volume

under the descending manifold and contour nesting data; this enhanced graph is known as a

topological spine. These visual representations of scalar fields maintain their topological and

geometric properties. The topological spine connects the chain of extrema using the traditional

visual representation while preserving the topology, localization of extrema, and nesting struc-

ture of contours.
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The visualization includes the design of the data and operation abstraction, characterization of

the problem domain, design of the visual encoding of the data, and interaction and algorithm

design. We focused on the analysis of the data and domain problem characteri- zation. The

statistical, machine learning, topological and geometrical analyses are performed combined.

The purpose is to provide ease of use, combining them and other techniques.

1.2 Project Goal

One of the valuable tools in the field of topological analysis is NDDAV (N-Dimensional Data

Analysis and Visualization). NDDAV offers a powerful approach to explore high-dimensional

data using the extremum graph. It provides an alternative method for analyzing data that

replicates the results and improve the results obtained from other techniques such as Mapper

or other high-dimensional visualization methods.

The extremum graph, utilized by NDDAV, enables the analysis of complex high-dimensional

scalar fields while preserving their local geometric structure. By leveraging the topology of

scalar fields, NDDAV extracts essential properties such as the number of connected compo-

nents on an iso-surface and the identification of critical points.

NDDAV’s strength lies in its ability to provide an intuitive and interactive visualization of

high-dimensional data. It offers researchers and data analysts an easy and quick way to an-

alyze their datasets. Through NDDAV, users can navigate and explore the extremum graph,

gaining insights into the underlying structure of their data.

By replicating analysis results obtained from other techniques, such as Mapper, NDDAV pro-

vides a valuable alternative that can be used to validate findings and ensure robustness in data

analysis. This allows researchers to employ different tools and compare results, enhancing the

reliability and credibility of their analyses.

Overall, NDDAV plays a significant role in facilitating the exploration and analysis of high-

dimensional data. Its availability as a user-friendly tool contributes to the advancement of

topological analysis and enables researchers to gain deeper insights into complex datasets.

The purpose of the application of cancer dataset [9] and inertial confinement fusion dataset [1]

is to understand the results but also to provide other insights. We have the high-dimensional

domain, which is the set of the input parameters or the latent space, and the scalar function on
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the domain to analyze it. We use the system to use the topological techniques to address the

problem. The topology of a function provides information about its global behavior and local

features. Topology provides an abstraction for visualization and analysis, whose complexity de-

pends on the function. It needs to provide more insight. In this system, topology information

is combined and linked with geometric information, which provides exploration among parallel

coordinates, topological features, and scatter plots.

The topological and geometrical analysis is done on the genomic dataset with the help of

N-Dimensional Data Analysis and Visualization tool(N-DDAV) and found the found the sur-

vival percentage of the various tumors and whose molecular structure is different from the

normal tissues. The NDDAV is the interactive software to explore, analyze and visualize high-

dimensional data. The layout has several analysis techniques, like dimension reduction and

clustering, with SOTA(state-of-the-art) techniques in topological and high-dimensional neigh-

borhood graphs. It combines the structure of a particular quantity of interest and insights into

the shape and structure of the domain of interest. The layout has a drag-and-drop technique,

and modules of the system are cross-linked so that the user can explore the influence of any

parameter on any other result. The modules contain combination of machine learning and both

the topological and geometrical features visualization like the topological spine, scatter plots,

parallel coordinate, clustering, peel ploting, dimenstional reduction and many more.

The scientist studying inertial confinement fusion at high energies, to investigate a broad ensem-

ble of simulations, physicists constructed a sophisticated surrogate model for the application.

Scientists are interested in comprehending and comparing the sample distributions since the

latter is driven by a sampling procedure in a high-dimensional latent space. In this scenario,

the objective is to build trust in the model itself while also providing insight into the overall

simulation findings, such as the reliance of fusion yield on design factors. Therefore, we want

methods for assessing model errors and uncertainties with a focus on how they vary across the

model domain. None of the currently available methods are especially suitable for analyzing

these scientific models because they either cannot scale to the requisite sample numbers or do

not give the essential information.

It is still necessary to use analytical techniques that take into account the high dimensional

characteristics of high-throughput biological data, whether it is produced by sequencing, tran-

scriptional microarrays, proteomic analysis, or other ways. The mathematical theory of form

identification in high dimensions continues to be a key component of data analysis since the

3



computational aspect of data analysis finally finds shape features in the organization of data

sets. In contrast to existing analytical methods, the method described collects information from

high throughput microarray data and uses topology to deliver deeper insight.
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Chapter 2

Related Work

This chapter discusses about the paper which introduces extremum graphs, existing works

for Morse-Smale complexes, NDDAV, and some other past visualization tools.

2.1 Extremum Graphs

The concept of extremum graphs was initially introduced by Correa et al. as a method to visu-

alize high-dimensional data in a two-dimensional representation while preserving the topology

and geometric properties of the original data. In their work, they also presented a sequential

algorithm for simplifying extremum graphs. The algorithm proposed by Correa et al. involves

computing the gradient flow graph for the scalar field under analysis. It simultaneously per-

forms two tasks: persistence simplification and identification of gradient paths from saddles

to extrema. By simplifying the extremum graphs based on persistence, they are able to re-

duce complexity while preserving the essential features of the data. To enrich the extremum

graphs with geometric information, Correa et al. introduced additional characteristics such as

the volume under the descending manifold of adjacent extrema. This augmented version of

extremum graphs is referred to as topological spines. By incorporating geometric attributes,

topological spines provide enhanced insights into the underlying structure of the data. The

work of Correa et al. represents a significant advancement in the field of topological analysis

by introducing extremum graphs and their simplification algorithm. These techniques enable

effective visualization and analysis of high-dimensional data while retaining important topolog-

ical and geometric properties. The augmentation of extremum graphs into topological spines

further enhances their utility by incorporating additional geometric information, enabling a

more comprehensive understanding of the data.
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2.2 Morse-Smale Complex

Shivashankar et al. developed a parallel computation algorithm for the MS complex, which an-

alyzes scalar fields. Their method parallelizes the identification of critical points and gradient

paths, improving computational efficiency. They also proposed techniques for performing ex-

ternal memory computations to handle large datasets that don’t fit in memory. Their research

addresses the need for faster analysis of increasingly large scientific datasets and contributes to

the field of topological analysis.

Machine learning solves problems in many fields, such as bioinformatics, physics, and many

others. With recent advances, deep learning models coupled with data analysis increases scien-

tist interest in these models for further discovery.

Many approaches have been proposed in machine learning to probe into the model’s mech-

anism. Like machine learning, visual analytics focuses on the interactive exploration of internal

models. These techniques are primarily model specific and tied to specific setups or architec-

tures. Recently, there have been systems focusing on developing the generic engine.

Compared to machine learning and statistical analysis tools, topological data analysis allows

to pick up of the important outliers that would get ignored in standard other analysis. Topo-

logical analysis has been utilized in various previous works, but scientists are also interested in

studying the information related to the high-dimensional data domain. So the HDVis[10] was

proposed for computing the topology for a high-dimensional scalar-valued function. However,

this contains a small number of samples. There needs to be more visualization of the mismatch

between the large datasets and the topology for the high-dimensional scalar function.

As the dataset size increases, the system needs to cope with rendering and handle the vi-

sual encoding. Many previous works proposed to address these challenges, designing visual

encoding to modeling and rendering the data.

In previous works, many tools guide users through high-dimensional data analysis in an in-

teractive visual environment. XmdvTool[12] helps in the visual exploration of multivariate

data and visualization techniques focusing on n-dimensional projection, like hierarchical clus-

tering, brushing, and graphical representations. VisuMap[2] is developed to analyze the high-

dimensional dataset, including dimension reduction, clustering, and linked data views for ad-
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vanced applications. Dimstiller[5] focuses on the analysis and dimensionality reduction, provid-

ing global guidance to the users through expression and operator abstraction. In topological

analysis techniques, Mapper[11] and persistence-based clustering[3] have been proposed to con-

struct the represents for visualization and data analysis of high-dimensional datasets.

This system combines the visualization of both the features of topological information and

geometric information. The NDDAV [8]includes graphical representation (examples – parallel

coordinates, scatter plots), dimensionality reduction, clustering, and topological analysis tech-

niques.

The usage of Mapper has previously been successful in revealing special features of RNA folding

patterns[7]. In this research, mapper is used to analyze transcriptionally genomic data from

diseases, with the help from Disease-Specific Genomic Analysis filtering function. By specifying

a transformation that gauges how much sick tissue deviates from healthy tissue, the Disease-

Specific Genomic Analysis technique of mathematical analysis of genomic data exposes the

component of data relevant to illness. When used in conjunction with Mapper, Disease-Specific

Genomic Analysis transformations offer a way to specify the guiding filter function by, basi-

cally, unravelling the data in accordance with the degree of overall departure from a healthy

condition.
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Chapter 3

Background and Definitions

Given a scalar field f : Rn → R, a point xϵRn is critical iff ∇f(x) = 0 and regular otherwise.

∇f = ( δf
δx1

, δf
δx2

, ......., δf
δxn

)

The critical points of function f , can be categorized based on their Morse index. The Morse

index of a critical point x corresponds to the count of negative eigenvalues in the Hessian matrix

Hf evaluated at x, where

Hf =



δ2f
δx2

1

δ2f
δx1δx2

....... δ2f
δx1xn

δ2f
δx2δx1

δ2f
δx2

2
....... δ2f

δx2xn

. . .

. . .
δ2f

δxnδx1

δ2f
δxnδx2

....... δ2f
δx2

n


The Morse index of critical points ranges from 0 to n, where critical points with an index of 0

represent the minima of function f, and critical points with an index of n represent the maxima.

Critical points with an index of k, where k is between 1 and n-1, are referred to as k-saddles.

Consequently, function f exhibits (n-1) different types of saddles.

3.1 Morse-Smale Complex

The Morse-Smale Complex of a scalar field f can be represented as a directed graph. Its vertex

set consists of all the critical points of f, while the edge set consists of gradient paths that

connect critical points with a difference in index of 1.

At regular points in the scalar field, we can define a gradient vector that indicates the direction

of the steepest increase in function value. A gradient path between two critical points, p and

q, differing in index by 1, is a sequence of points where each adjacent pair (r, s) represents the
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terminal point of the gradient vector at r.

For example, in a 2D scalar field, the Morse-Smale complex would include minima, 1-saddles,

and maxima. The complex would consist of gradient paths connecting maxima and 1-saddles,

as well as gradient paths connecting 1-saddles and minima.

Computing the Morse-Smale complex for scalar fields with high dimensionality becomes com-

putationally challenging due to the exponential growth in the number of critical points and

gradient paths. Additionally, the presence of inter-saddle gradient paths can lead to significant

occlusion problems when visualizing features related to extrema.

3.2 Extremum Graph

Extremum graphs are a specific type of the Morse-Smale complex. For any scalar field f : RnßR,

there are two extremum graphs:

1. Maximal extremum graph: This graph consists of maxima and (n-1)-saddles, along with

the connecting gradient paths between them.

2. Minimal extremum graph: This graph includes minima and 1-saddles, along with their con-

necting gradient paths.

Based on the definition of critical points, the maxima of the scalar field -f correspond to the

minima of f. Similarly, the (n-1)-saddles of -f correspond to the 1-saddles of f. Hence, an

algorithm designed to compute the Maximal extremum graph can be utilized to compute the

Minimal extremum graph. To simplify terminology, the collection of both maxima and minima

is commonly referred to as extrema.

However, in order to address occlusion problems in visualization, we introduce the concept

of an edge-bundled extremum graph. This subset of extremum graphs ensures that for each

nonempty intersection of adjacent saddles belonging to a pair of extrema, only one representa-

tive saddle is chosen, discarding the rest. In our implementation, the representative saddle is

selected based on the highest function value.

In top show an extremum graph of simple 2D terrain connects critical points along steep-

est ascending(or descending) lines, which join adjacent extrema and therefore better preserve

locality. Bottom show an abstract representation of the extremum graph.

9



Figure 3.1: Extremum Graphs

Figure 3.2: Topological spines

3.3 Topological Spine

Correa et al. first introduced the concept of topological spines, which serve as a canonical

visual representation that connects a sequence of critical points while preserving the topology,

locality of maxima, and nesting structure of surrounding contours. Topological spines retain

essential geometric information and are particularly useful when numerous existing features are

associated with extrema or when exploring the presence of neighborhood critical points in a

dataset.

To visualize topological spines, the first step is to compute the extremum graph. This graph

serves as the foundation for constructing the topological spines, enabling a comprehensive rep-

resentation of the data’s structure and relationships between critical points. By utilizing the

extremum graph, topological spines provide a visual means of understanding the connectivity

and hierarchy of extrema and their associated contours.
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3.4 Scatter PLot

Parallel coordinates is a visualization technique commonly used to explore multivariate data.

It involves representing each data point as a polyline in a coordinate system, where each dimen-

sion is represented by a vertical axis. These polylines are then displayed in parallel, allowing

for the simultaneous visualization of multiple variables.

In a parallel coordinates plot, each axis represents a different variable or dimension of the

data. The data points are connected by lines, creating a polyline that spans across all the axes.

This representation enables the examination of patterns, trends, and relationships among the

variables.

By visually comparing the shape and behavior of the polylines, one can identify correlations,

clusters, and outliers in the data. Parallel coordinates provide an effective way to explore and

understand the interactions between variables, as well as to detect patterns that might not be

easily discernible in traditional scatter plots or histograms.

Parallel coordinates are particularly useful for visualizing high-dimensional datasets, as they

provide a compact and intuitive representation of the data’s structure. Additionally, interac-

tivity can be incorporated into parallel coordinates plots, allowing users to dynamically filter,

highlight, and explore specific subsets of the data based on their interests and research ques-

tions.

3.5 Parallel Coordinate

A scatter plot is a visual representation of the relationship between two numerical variables.

Each data point is represented by a dot on a two-dimensional coordinate system, with one vari-

able on the x-axis and the other on the y-axis. Scatter plots help identify patterns, trends, and

correlations in the data. They are useful for exploring and analyzing numeric data, detecting

outliers, and understanding the relationship between variables.

3.6 Relative Neighbour Graph

The Relative Neighbor Graph (RNG) is a proximity graph that connects points based on

their relative distances. It links each point to its nearest neighbors that are not closer to any

other point. The RNG is effective for handling non-uniformly distributed data and can reveal

local structure and clustering patterns. It is useful in areas such as pattern recognition, data
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clustering, and spatial analysis.

3.7 Gabriel Graph

The Gabriel Graph is a geometric graph construction method used in computational geometry

and spatial data analysis. In the Gabriel Graph, an edge is drawn between two points if and only

if the circle defined by their pair of points does not contain any other data point. It captures

the proximity relationships between points while avoiding unnecessary connections. The graph

provides insights into spatial arrangement, connectivity, and neighborhood structure in the

data.

3.8 Diamond Graph

The Diamond Graph is a graph construction method used in computational geometry and

network analysis. It connects nodes based on their shared neighbors, forming a diamond-shaped

graph. It captures local connectivity patterns and is useful for studying proximity relationships

in networks. The Diamond Graph helps identify clusters and analyze structural characteristics

in applications such as social network analysis and spatial data analysis.

3.9 B-Skeleton Graph

The B-skeleton Graph is a method used in computational geometry and image processing to

simplify the representation of objects or shapes. It constructs a graph based on the connectivity

and local characteristics of the shape, emphasizing its main branches or skeleton-like structure.

The B-skeleton Graph is commonly used for shape analysis and feature extraction in image

processing tasks, providing insights into the shape’s structural components and facilitating

further analysis.
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Chapter 4

Problem Description

This chapter describes the problem statement and the solution for the project.

4.1 Problem Statement

The challenges faced in visualization using machine learning techniques are - the utilization of

the black box models in interpreting the model behaviors and the growth in computing produced

millions of datasets that needed techniques to handle it. In this, we used the scalable solution to

explore and analyze the high- dimensional functions encountered in scientific data analysis. We

tried the interactive exploration of the topological and geometric aspects of the high-dimensional

data by combining the neighborhood graph construction, corresponding topology computation,

and data aggregation. We used the NDDAV – N-Dimensional data analysis and visualization[4].

4.2 Solution Overview

NDDAV – N-Dimensional data analysis and visualization is an interactive tool combination of

dimension reduction, clustering, neighborhood graphs, and topological analysis. The extremum

graphs become important in topology, as they allow for the dimensionality reduction and ex-

ploratory analysis of high dimensional scalar fields while preserving the geometric structure.

Mostly the extrema are the exciting features of scalar fields, making the extremum graphs an

appealing choice for high-dimensional analysis. We provided two use cases from computation

biology and high energy physics to show how this setup have produced the findings similar to

the other method in both the fields.
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Chapter 5

Design and Implementation

5.1 System Modules

The initial system in the filter module consists of the function definition and the dataset selec-

tion. It provides the convenience of loading the files, scaling and standardizing the data, and

defining the function in the domain and range. If needed, the module automatically normalizes

the values by scaling each axis to either standard deviation or range.

The clustering module consists of the number of clusters and the type of clustering techniques

like DBSCAN, Kmeans, Meanshift, and spectral, which are represented as color-mapped scatter

plots. The persistence level is required to achieve the results in the topological decompositions

setting of scale parameters. The plateaus in the curve represent the stable threshold, and the

user can determine which persistence relates to noise and which to the valuable features.

The scatter plot module is linked and synchronized to the filter module. It correlates be-

tween the input pairs with colored points by either output values or topological segmentation

and clustering. The table view module is linked with the parallel coordinate and scatter plot,

which allows the user to investigate a particular point in the table.

The neighborhood graphs modules have three parameters to select – the number of neighbors,

the Beta value, and the type of neighborhood graph. There are different types of neighbor-

hood graphs examples – relative neighbor, ANN, Gabriel, diamond, Bskeleton, relaxed Gabriel,

and many others. The parallel, coordinated module is linked with the filter module, scatter

plot, and topological module; it helps to see the link in all the graphs when the user wants to

investigate any of the extrema or the points with other value input parameters. The Morse

complex is computed of the function which provides the maxima or minima of the function or

14



high dimensional valleys and mountains. The topological spine module encodes the extremum

graph of scalar fields by representing the connectivity of the saddles and extrema together with

the peaks. There are other modules like the summary scatter plot and summary parallel co-

ordinate plot which can be used when the dataset is too large for the visualization. The table

module provides the table information from where the user can see all modules visualization of

particular data point. The plot peeling module helps the user to peel out the part from any of

the geometric or topological graph and see it’s other visualization in other modules.

Before, providing the datasets of both the cases, the high-dimensional datasets are firstly pre-

processed and cleaned accordingly to the cases and then provided to the filtering modules and

other modules of the system. So when the dataset is given in the fitering module the dataset

get preprocessed and then given to the other visualization module.

5.2 Experimental Analysis

We tried to do the visual analysis on the Intertial Confinement Fusion Dataset[6] and the breast

cancer tumor dataset. In this application, the physicists focus on the accuracy and behaviors

like the area of input parameter that produces more errors. In this application, we focused on

the high-dimensional landscapes which produce the errors. Using the NDDAV system tool, we

predicted the error as a function in the input domain, which can be analyzed as a high-dimension

scalar-valued function. We linked the several visualization graphs to each other modules, giving

users the interactive linked view analysis and exploration. As the dataset contain some empty

rows and the values are not in the normalized form. So, the dataset have the parameters and

scalars values of the high dimensions which are cleaned and preprocessed as we give the dataset

to the filtering module.

Using the tool, we are able to present that the system allows the interactive linked visual-

ization analysis and exploration. From the topological spine module, there are two extrema

of errors in the 15D scalar space. The number of the local extrema in the spine structure

can be changed by changing the range and number of extrema in the plot. The highlighted

parallel coordinated can be seen of the particular extrema. To explore the relationship between

the parallel coordinates and the topological spine, just user have to focus on the peak of the

topological spine which will relate and update in the parallel coordinate plot.

The extrema correspond to the patterns and plots in the parallel coordinates which is ig-

nored by the statistical analysis techniques. Seeing the various pattern of the plots of the error

together, we found that there are similarity in the plots of the parallel coordinates, extrema,
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but some of the highlights do not reappear. So, in this way it helps to the physicist to explore

further in the cause of the errors which were ignored before the visualization analysis. It will

make interesting to understand the reason and solve it by fixing it.

In the tumor dataset biological case as the data contain of all the age group with different

features like age in years, event death percentage, survival percentage, chemotherapy success,

hormonal therapy, amputation breast removal, histological grade, diameter of tumour, positive

in lymph nodes, cancer grade, extent of invasion into blood vessels, extent of lymphocytic infil-

tration, estrogen receptor expression and there are many other features present in the dataset.

So, doing the feature engineering and data preprocessing on the dataset by removing the early

birth age group which do not have the cancer, normalizing and removing the null dataset in

the data. By seeing the relation between the features we removed the features after providing

the dataset to the filtering module. After loading the dataset in the filter module and after

getting the data to be preprocessed initially with default parameters of every module the system

provides the visualization of different topological and geometrical graphs.

With the help of the extremum graph and topological spine visualization to the genomic data,

we can create an equally graph from a significantly less accessible one as the dataset is high

dimensional dataset. Many objectives can be accomplished by using the disease component de-

viation from the health data rather than the original data like identifying the extent to which

diseased tissue data differ from the healthy tissue data, allowing range of variability within the

normal range or incorporating the controls into the analysis. The use of the disease data had

been found to outperform than the use of the original data and reveal distinct biology. The use

of the illness component of the data has been found to perform better than the use of original

data and to reveal distinct biology. In compare to a direct comparison of data from normal and

neoplastic tissue, which tends to emphasise the background molecular signature of the tumor’s

progenitor cell type, this method emphasises how aberrant a tumor’s gene expression is.
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Figure 5.1: Analysis Window
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Chapter 6

Results

6.1 Visualization

The topological spine encodes the extremum graph of a scalar field by representing the con-

nectivity of the extrema and saddles together with the size of the peaks. The contours around

the saddles and extrema represent the level of the function. The contour size in the module is

defined as the number of samples above the contour function value. The number of the extrema

in the topological spine is controlled by the plot where the x-axis is the function range, and the

y-axis is the number of the local extrema.

The Neighbourhood module contains three parameters in it - the maximum number of neigh-

bourhood, the beta value and the graph type as relative neighbor, ANN, Gabriel, diamond,

Bskeleton, relaxed Gabriel, relaxed relative gabriel, relaxed diamon , grid, and relaxed bskel-

ton. This neighbourhood graph is linked with the topological spine module. As we changes the

graph type or the number of neighbourhoods or the beta value the extremum graph values get

changes and which gives us different topological spin.

The number of the peaks is shown in y-axis for the given persistence values in x-axis. The

persistence values at the plateau areas shows more stable topological structures.

The topological spine visualization with the different number of extremas and different type of

the graphs.

The cluster module have different clustering method like PCA(principal component analysis),

spectral, locally linear, Isomap, and tSNE, with the other parameter as the neighbour.
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Figure 6.1: The tumor dataset is load in the filtering module with the function having the
domain and range in selection and having subselection to be scaled dataset or the standardized
dataset.

Figure 6.2: The initial layout of NDDAV containing various modules on the left allows user to
have new module and drag to right side into the work area and visualize it. It is the initial
visulization with the inertial confinement fusion dataset.
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Figure 6.3: The layout shows when the tumor dataset is loaded initially after getting prepro-
cessed, all modules are interlinked with each other.

Figure 6.4: Topological Spine of the Inertial confinement fusion.
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Figure 6.5: Topological Spine of the tumor dataset.

Figure 6.6: Neighbourhood Module

Figure 6.7: Topological Multi-Spine

21



Figure 6.8: The topological spine represent the tumor dataset with the three extremas and the
relative neighbour graph type

Figure 6.9: The visualization represent the tumor case with the ten extremas and the relaxed
gabriel graph type
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Figure 6.10: The topological spine represent the canser usecase with the nine extremas and the
Bskeleton graph type

Figure 6.11: Clustering Module
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Figure 6.12: Clustering

In the clustering module, it’s the inertial confinement fusion use case, it gets linked to the

scatter plot and color-point plot view. The user can change the parameters in the clustering

techniques like the number of the clusters, the kernel bandwith and the type of the clustering

techniques.

The density scatterplots are obtained from the histogram and render the joint distribution

density to avoid the overplotting problem when there are large number of datapoints.

The parallel coordinates visualization is drawn from the 2D joint distributions of the dat-

acube. It shows the relation of the input value parameter with each other and synchronized

with the other modules in the system.

The scale of the parallel coordinate contains various features for scaling the graph with

giving the relation between different parameters of the dataset.

The dimensional reduction module contains two parameters as the method of the cluster-

ing and the number of clusters for the clustering method. The module gives different clustering

method to the user like DBSCAN,KMeans, Meanshift and spectral clustering.

In this it is the joint exploration of the topological and geometric features of the functions in

the input paramter space. Here, as we change the number of the neighbourhood or the neigh-

borhood graph type it directly relates to the topological spine and the extrema in it.
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Figure 6.13: Scatter Plot

Figure 6.14: Parallel Coordinate of the intertial confinement fusion usecase

Figure 6.15: Parallel Coordinate of cancer usecase
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Figure 6.16: Dimension Reduction Module

Figure 6.17: Dimension Reduction for the fusion usecase

The structure of the toplogical spine gets changed. As there are four extrema in the topology

spine which represent the output error. The other module - the scatter plot and the parallel

coordinate are linked to the module. The user select any of the extream point on the topological

spine both the plots get peeled off and show the information related to the particular points. The

user can focus on any other points of other plots and can see the peeled plot of other modules.

We changed the neighborhood graph by changing either the no. of neighborhoods, the β value

or the type of the neighborhood graphs. The topology spine contains the six local extrema

and the user can explore the other plots of the particular extrema by focusing on the point.

Figure 6.18: The top first extrema is selected in the topological spine and by selecting the data
information got clipped in the parallel coordinate and the scatter plot.
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Figure 6.19: The top second extrema is selected and accordingly the views provide comple-
mentary information, and the linked selection enables a joint analysis of both geometric and
topological features.

Figure 6.20: The last extrema is selected as it shows the joint exploration of both topological
and geometric characteristics of the surrogate’s errors as functions in the input parameter space.

Figure 6.21: This is the flow of the visualization as we changes the parameters of the various
different modules like the neighbourhood module by changing the number of neighbourhood
and the graph type.

Figure 6.22: The range in the parallel coordinate in on of the features is selected and the other
visualization got clipped accordingly.
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Figure 6.23: The visualization shows the deviation of the five percentage tumors are very large
from the normal original tissue of a particular type.

Figure 6.24: The user select the other extrema from the graph the visualization give the joint
information of particular features of the tumor with it’s topological and geometric features.

Here as we changes the parameters of the neighborhood modules the extremum graph results

changes like the function min, function max, the extrema size and the sadddle size output.

The following gives us the visualization and insights of the cancer dataset usecase, the which

type of the tumor are ordered by the deviation from the normal,it’s fatal or not. The data is

being clustered with the mean of the filter on the points.The tumors are being clustered on the

basis of the deivation on from the healthy original data. The extrema shows us the particular

tumor with it’s different features which gives insight about the tumor deviation, the age group

fall in that type of the tumor, the death and survival percentage, the percentage of the human

tissue affected and many more.
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Figure 6.25: Biologist select different age group to find out what type of tumor does that group
have and how much it is deviated from the original.

Figure 6.26: This gives the biologists regarding the insight with the help of the extremum graph
with the visualization of the graphs.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this we have setup the system for the topological and geometrical data analysis and visual-

ization. We tried to explore and analyse the Intertial confinement fusion dataset. We tried to

identified the set of the tasks in analyzing the data derived from the pipelines for the discovery

and will further try to address these challenges with the combination of the both the geomet-

ric and topological features of the other dataset of the any organ cancer. The objective is to

analyse the extremum graph construction for the high dimensional scalar valued functions and

to linked the plots to explore the extrema of the topological spine, to find the insights from it

which can help the scientist for further research. The aim of the tool is to give more information

related to the domain input parameters which are ignored by the statistical or deep learning

techniques. In the scientific discovery it is more important to build the confidence in the model

and understand where and why the model is unreliable. The system can help in the evaluating

and fine tuning the models of the domain. The NDDAV present the stepping stone towards

the visualization and analysis of the high-dimensional functions.

7.2 Future Work

We plan to work upon the visualization of the extremum graph module on the tool itself and the

display of the extremum graph information data on the system. We plan to improve the tool in

terms of the extremum graph analysis and adding the other modules. The main plan is to work

on the other domain of the scientific discovery and explore and analyze the high dimensional

dataset of the and how exyremum graph analysis can help to other domain scientist also. By

the exploration will like to provide the insights to the domain which was ignored during the

statistical or machine learning technique. To work with other high dimensional application
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areas and to expand and improve the tool. [? ].
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