
Scalable Methods for Visualizing Flow in a Pellet Filled

Reactor

A PROJECT REPORT

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Engineering

IN

Computer Science and Engineering

BY

Jaipreet Singh

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

June, 2017

Declaration of Originality

I, Jaipreet Singh, with SR No. 04-04-00-10-41-15-1-12031 hereby declare that the material

presented in the thesis titled

Scalable Methods for Visualizing Flow in a Pellet Filled Reactor

represents original work carried out by me in the Deparment of Computer Science and

Automation at Indian Institute of Science during the years 2015-17.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discusions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Prof. Vijay Natarajan Advisor Signature

1

c© Jaipreet Singh

June, 2017

All rights reserved

DEDICATED TO

Visualization and Graphics Lab, IISc

&

Shell Technology Centre, Bangalore

Acknowledgements

I would like to express my sincere gratitude to Prof. Vijay Natarajan for his unmatched guidance

and supervision. I have been extremely lucky to have work with him. I am thankful to people

at Shell Technology Centre, Bangalore for their assistance and guidance. It had been a great

experience to work with them. I would like to thank the Department of CSA for providing

excellent study environment and infrastructure.

i

Abstract

Smoothed-particle Hydrodynamics (SPH) simulations generate large amounts of flow field data.

Extracting knowledge from these volumes of data and visualizing the huge data are challenging

problems as the simulation produces a collection of particles together with multiple physical

quantities like density, velocity, pressure and temperature at each particle location. For simulat-

ing flows of fluid in a reactor filled with pellets, our aim is to visualize 100 million particles. As

a first step, we develop a scalable parallel algorithm to convert the simulation output into a grid

representation that is amenable to fast visualization. The parallel algorithm is implemented on

a manycore (GPU) architecture. In the next phase, we develop fast visualizing techniques that

helps in interactive visualization of the generated 3D grid.

ii

Contents

Acknowledgements i

Abstract ii

Contents iii

List of Figures v

1 Introduction 1

2 Background 3

3 Related Work 6

4 Dataset Description 8

5 Methodology 9

6 Structured Grid Representation 11

6.1 Algorithm Flow . 12

6.2 Error Computation . 13

6.2.1 Root Mean Square Deviation . 13

6.2.2 Mean Absolute Difference . 13

6.2.3 Infinity Norm . 14

7 Visualization 15

7.1 Important Slices Animation . 15

7.2 Sub-volume Extraction . 16

7.3 3-Slice Intersection . 16

iii

CONTENTS

8 Experimental Results 17

8.1 Structured Grid Representation . 17

8.2 Grid Visualization . 21

8.3 Execution Timings and Errors . 25

9 Conclusion and Future Work 28

A Algorithm Work-flow 29

Bibliography 32

iv

List of Figures

3.1 Contribution from neighbouring Voronoi cells based on the area in original Voronoi

diagram. (a) Original Voronoi diagram for sites p1, p2, p3 and p4. (b) Updated

Voronoi diagram because of a new site p. (c) u1, u2, u3 and u4 is the contribution

from p1, p2, p3 and p4 respectively. 6

6.1 (a) Contribution from neighbouring particles to a grid point. (b) Each thread

launched computes an interpolated value for one grid point. 11

8.1 For computing the Sum of gaussians field, the parameters of the gaussian density

functions were fixed in such a way that at isovalue = 1 we get the surface

represented by the particles. For input file containing 5 million particles, we

obtain the above surface representing boundary of reactor and the pellets within. 18

8.2 The sum of gaussians field for the input point cloud. (a) Front view. (b) Side

view. (c) Back view. 19

8.3 Density scalar field generated using Shepard interpolation (a) Front view, (b)

Side view. Velocity scalar field generated using Shepard interpolation (c) Front

View, (d) Side View. 20

8.4 The sum of gaussians field for input file containing 9.5 million particles. 21

8.5 The sum of gaussians field for the input point cloud containing 21 million parti-

cles. (a) Entire scalar field. (b) A slice from the field. (c) Important slice from

the field. 22

8.6 The sum of gaussians field for the input point cloud containing 21 million par-

ticles. (a) A sub-volume region within a field. (b) 3-slice intersection at global

maximum value. 23

8.7 The sum of gaussians field for input point cloud containing 9.5 million particles.

(a) Entire scalar field. (b) An important slice from the field. (c) Hotspot region

for a slice. (d) 3-slice intersection at global maximum value. 24

v

LIST OF FIGURES

8.8 For 21 million particle dataset, (a) Algorithm execution timings and (b) com-

puted errors. 26

8.9 For 9.5 million particle dataset, (a) Algorithm execution timings and (b) com-

puted errors. 27

vi

Chapter 1

Introduction

Smoothed-particle Hydrodynamics (SPH) is a computational method used in fluid flow simula-

tions. The SPH method works by dividing the fluid into particles. For a single SPH simulation,

millions of particles are generated. Each particle will have some physical quantities associ-

ated with it like density, velocity, temperature, pressure, mass, location etc. Several files each

containing millions of particles will be generated for different simulations. Handling such a

huge data and then visualizing it interactively is a challenging task. Early analysis of the data

generated by large scale simulations is crucial to effectively monitor the correct progress of sim-

ulations and the understanding of simulation results. Such early analysis capability requires a

monitoring framework that allows analysis tasks to take place on-the-fly while data is generated.

Simulation data is provided for reactor filled with pellets. Pellets are cylindrical shaped

objects that take part in reaction with the fluid inside the reactor. These pellets help in

refining the fluid. This data can be very large. We would like to read the necessary data

within seconds. Once we have processed the data and extracted all the useful and necessary

information, we would like to develop efficient and fast methods for interactive visualization

to explore various physical quantities available from the simulation. Visualizing these physical

quantities will help in understanding the flow of fluid through pellets inside the reactor. Pellets

can be arranged in different patterns and each pattern can be visualized and analyzed in

order to get optimum results from the reaction. Current methods require large amount of

time for processing and visualizing the data. Implementing interactive visualization techniques

further help in understanding the data. The key idea is to represent the data into an efficient

representation. In our implementation, we sample input particles onto a grid for fast and

interactive visualization. Performing computations over all grid points is an expensive task.

We use GPU to achieve parallelism so that each grid point computation can be handled by one

thread. Parallelism helps in improving the execution time for grid generation.

1

We use Paraview, an open source application for scientific visualization, for visualizing the

grid instead of a stand-alone visualization tool. We implement visualization modules on top

of Paraview because it provides various inbuilt functions like isosurface extraction, volume

rendering, subset extraction and slicing for a grid data and also it is a commonly used tool for

visualization purposes. Forming a grid helps us to exploit these functionalities of Paraview.

In this project, we develop an efficient representation for processing and storing information

for millions of particles. We also develop fast visualization methods that helps us in under-

standing and analyzing the data.

2

Chapter 2

Background

Physical quantities such as temperature, velocity, density and pressure are often represented

as scalar fields within a domain. A manifold M is a topological space that locally resembles

the Euclidean space. For an n-dimensional manifold, Mn, each of its point will have a neigh-

bourhood that is homeomorphic to the n-dimensional Euclidean space, Rn. A scalar field, S,

on region U ⊆M, is a function defined as

S : U −→ R

In other words, every point in U will have some scalar value associated with it. In this report,

we talk about scalar field defined on R3. In practice, scalar field is available as discrete samples

at some vertices in the domain. Scalar values for the rest of the points in space is obtained by

linear interpolation.

Scalar fields are visualized by extracting and displaying isosurfaces or level sets. For a given

isovalue v, level set L is the preimage of scalar field S

L(v) = S−1(v)

Level sets of 2D scalar fields are 1D curves called isocontours and level sets of 3D scalar fields

are 2D surfaces called isosurfaces.

Gaussian density function [1] can be used to represent the surface of a molecule. A molecule

consists of atoms and each atom has some radius and position. SPH simulation data file

contains information about particles’ location. Each particle has a fixed radius. We use the

same approach mentioned above to get the envelope surface represented by particles. Gaussian

3

density function [1] used in this report is defined as

D(x, y, z) =
∑
i

bi e
−air2i (2.1)

where gaussian is centered at ri, bi is the height of the gaussian bump and 1/ai is the variance.

A surface can be defined as those points where this gaussian density function equals a given

threshold value T :

F (x, y, z) = D(x, y, z)− T

Setting

T = bi e
−aiR2

i

where Ri is the radius of particle, we get

ai = − ln(T/bi)

R2
i

A blobbiness parameter, Bi, may be defined as

Bi = ln(
T

bi
)

so that solving for bi we get

bi = T e−Bi

We set T = 1. A threshold of 1 is convenient since its logarithm is 0. Surface defined by one

particle is then a quadric surface. Blobbiness Bi can be changed to decide the smoothness of

the surface. In our implementation, Bi is set to −0.1.

SPH simulation generates data in the form of particles. This data contains particle infor-

mation in R3. For visualization, it is desirable to have the input defined over a regular grid. An

interpolation technique is required to generate uniform grid data from scattered data. Shep-

ard’s method is one of the earliest techniques used for interpolation [8, 4]. Shepard Interpolation

[5] is the weighted average of the values available for n points. To obtain interpolated value at

point p, we use

xp =

∑
i uif(xi)∑

i ui

(2.2)

4

where ui = 1
d(p,xi)

, d(p, xi) is the distance between point p and xi, f(xi) is the function value at

xi. This method is global because the interpolation function is evaluated for all grid points.

5

Chapter 3

Related Work

Several methods have been developed for converting scattered point data into a grid and then

visualizing it. Sibson Interpolation [8, 4] starts out with Voronoi diagram for given points.

When a new point is inserted, it updates the Voronoi diagram and calculates the contribution

from neighbouring sites based on area/volume in the original Voronoi diagram. Figure 3.1(a)

shows original Voronoi diagram for sites p1, p2, p3 and p4. In figure 3.1(b), a new site p is inserted

and Voronoi diagram gets updated. Figure 3.1(c) shows the contribution from neighbouring

sites of p based on their area in original Voronoi diagram.

(a) (b) (c)

Figure 3.1: Contribution from neighbouring Voronoi cells based on the area in original Voronoi

diagram. (a) Original Voronoi diagram for sites p1, p2, p3 and p4. (b) Updated Voronoi diagram

because of a new site p. (c) u1, u2, u3 and u4 is the contribution from p1, p2, p3 and p4 respectively.

Some methods have been developed to visualize the molecular surface given positions of

atoms [2, 1, 3]. Molecular Surface definition is introduced in [1] called Metaballs. This is an

implicit surface defined as all points p ∈ R3 which satisfy a certain equation F (p) = 0. Each

particle i is represented by a density function Di(p) that degrades with distance to the atom

6

center ai. The density value of all particles is added up for each point to a global density field

D(p) =
∑

i Di(p). The isosurface is defined by a threshold value T as F (p) = D(p) − T . We

have extended this approach to find the surface represented by particles using gaussian density

function. Surface can also be extracted using Marching Cubes algorithm [3].

Shepard interpolation [5] is another technique to get interpolated values at grid points from

a given point cloud. Values at grid points can be calculated using weighted average of the given

points. The weight assigned is inverse of the distance between grid point and the particle. We

use this interpolation to compute various fields. This approach can be implemented in parallel

because the computation of interpolated value for a grid point is independent of other grid

points.

7

Chapter 4

Dataset Description

Simulation data is available for a small cross section of a cylindrical reactor. The reactor is

filled with cylindrical shaped pellets. The pellets and the boundary of reactor are represented

as particles. The data file consists of 21 million particles and there are some physical quantities

like location, density, velocity and temperature corresponding to each particle. Input data file

uses XML syntax and support features like compression, binary encoding and little endian and

big endian byte order. Each physical quantity is stored as an XML node and text part of node

has information for each particle corresponding to physical quantity. Data file containing 21

million particles contains data in little endian byte order. Data corresponding to each physical

quantity is compressed using zlib library and then encoded in base64. Size of data file containing

21 million particles and 6 physical quantities is 2GB.

8

Chapter 5

Methodology

Current technique visualize the data based on particles’ location. This method works well for

small number of particles but for millions of particles, this is not an efficient solution. Develop-

ing interactive visualization methods also becomes difficult for a large dataset. Main challenge

in current approach is the scalability of algorithm i.e algorithm should be able to handle and

process millions of particles within seconds. Next challenge is to make the visualization interac-

tive for the user. We handle these challenges in two phases. First phase make use of GPU and

CPU cores to achieve parallelism so that large datasets can be processed within few seconds.

In second phase, we focus on developing methods for interactive visualization.

The first phase of the project focuses on design of the representation scheme. The simulation

produces a collection of particles together with multiple physical quantities computed at each

particle location. We build a 3-D grid for storing all variables associated with the flow in

the reactor. Fast parallel methods have been developed in the past for computing a gaussian

density function for molecular surface computation and visualization [2, 1]. We extend the

same approach to compute the gaussian value for each grid point. In order to make our parallel

algorithm more efficient, we develop an accelerated data structure which takes the contribution

of only those particles that are in the neighborhood of a grid point. We don’t consider far

particles because their contribution towards a grid point will be negligible. The parameters

for gaussian function are set in such a way that the isosurface at isovalue = 1 represents the

envelope surface of the particles. We also compute various fields like density and velocity field

over the grid using Shepard interpolation technique [5].

In second phase of project, we develop techniques within Paraview framework for fast and

interactive visualization of the earlier generated grid. These methods helps us in understanding

the distribution of function values within the field. These techniques involve interactive ani-

mation of important slices, identifying a hotspot region within a slice and getting intersection

9

of slices at global maximum function value. Filters available in Paraview are used to develop

these methods.

10

Chapter 6

Structured Grid Representation

In first phase of project, we implement a GPU based algorithm which outputs a 3D grid

for a given point cloud data. User has the choice of selecting a field for computation. We

define supercells in our implementation as cubes having some fixed width. Supercells helps in

making our parallel algorithm more efficient. Width of the supercells is set to smoothing length.

Smoothing length is the cutoff radius which is used to identify neighboring particles, i.e only

those particles that lie inside this radius for a particular point. We use contribution from only

those particles that lie in neighboring supercells of a grid point. These supercells are numbered

and each supercell may contain some particles and grid points depending on it’s width. A

supercell may even be empty. In Figure 6.1(a), green boundary cubes represents supercells.

Based on a known particle location coordinate inside the grid, the supercell number in which

that particle lies can be computed in O(1) time. The algorithm is implemented in C++ using

CUDA.

(a) (b)

Figure 6.1: (a) Contribution from neighbouring particles to a grid point. (b) Each thread
launched computes an interpolated value for one grid point.

11

Algorithm 1 Generating 3D grid from point cloud

Input: Simulation data file containing particles.

Output: VTK file containing scalar fields defined over a grid.

1: Compute range in X,Y,Z axes.

2: Input dimensions for axis having minimum range.

3: Compute dimensions for remaining two axes.

4: Arrange particles according to their supercell number.

5: Launch GPU kernel for chosen fields.

6: Write obtained outputs to VTK file.

7: Compute errors.

6.1 Algorithm Flow

• Initially the input file is read and based on particles’ locations, range of particles is

calculated in all three axes. User is then asked to enter the dimension for axis having

minimum range.

• Based on the dimension entered, step size s is computed and using this step size dimensions

for other two axes are also computed.

• A border (5 × s) is added in each axis so that the effect of boundary particles is also

visible.

• Based on particles’ locations, all the particles are arranged into supercells so that for a

given grid point, particles that are present in a supercell as well as neighbouring supercells,

can be quickly accessed.

• An array is maintained to keep track of number of particles in each supercell. Particles

are arranged in supercells as shown below. Index indicates supercell number and red dots

within a supercell indicate particles.

12

• Kernels for selected fields are then launched. For each kernel, one thread is launched

per grid point. To compute interpolated value at a particular grid point, contribution

from neighbouring particles which lie in adjacent supercells is taken into consideration.

This is done to reduce the computation overhead as particles that are far away will have

negligible contribution.

• When a kernel is launched, many threads are spawned that perform the computation

in parallel. Figure 6.1(b) shows a thread Ti performing computation on grid point Gi.

Particles p1, . . . , p7 denotes the neighbouring particles from adjacent supercells.

• Once we obtain interpolated value at all grid points for a field, those values are written

to the output file.

• We also compute Root Mean Square Deviation(RMSD), absolute mean error and max

difference error to look at errors which is introduced due to conversion from point cloud

to 3D grid.

6.2 Error Computation

We use Shepard interpolation technique to convert a given point cloud into a 3D grid. This

interpolation leads to some error. Once a 3D grid is obtained, we use trilinear interpolation

to get interpolated value at the particle’s location. Let this value be denoted by f ′ and actual

value at that particle’s location be denoted by f . We compute three different error measures

to study the differences between the grid representation and the input particle data.

6.2.1 Root Mean Square Deviation

Root Mean Square Deviation(RMSD) is computed as follows:

RMSD =

√∑N
i=1(fi − f ′i)

2

N

where fi denotes the actual function value of ith particle and f ′i denotes the interpolated value

computed at ith particle location. N denotes total number of particles.

6.2.2 Mean Absolute Difference

Mean Absolute Difference is given by:

AMD =

∑N
i=1 |(fi − f ′i)|

N

13

6.2.3 Infinity Norm

We compute Infinity Norm as follows:

MD = max(|(fi − f ′i)|)

for i = 1, 2, . . . , N

14

Chapter 7

Visualization

In second phase of project, we develop methods using Paraview framework which helps us in

getting a better insight at the data. We implement several algorithms in Python which allows

us to look at interesting regions within the field such as hotspot regions, sub-volume extraction

and important slices. All these algorithms are interactive and use some of Paraview’s inbuilt

filters.

Paraview is an open source application for scientific visualization. It is used to analyze

and visualize data sets. Data exploration can be done interactively in 3D or by writing pro-

grammable filters using Paraview’s batch processing capabilities. Paraview provides it’s own

python shell for writing scripts. We use this functionality to write our python programs which

help us in visualizing the above generated grid interactively and efficiently.

We can visualize the generated fields in “volume rendering” mode, an inbuilt function of

Paraview. It’s a good way to visualize an entire scalar field but it doesn’t help when we want

to look at some small portion/region of the field which is important from data analysis point

of view. To be able to better understand the field, we look at some of the methods which we

have implemented.

7.1 Important Slices Animation

Our field is represented as a 3D grid. A “slice” can be defined as a plane obtained from within

the grid. For eg. let’s say our grid range goes from z = 0 to z = 5 in Z axis. Then a plane, say

z = 2, will give us a slice (Figure 8.5(b)).

Looking at a single slice may not provide us sufficient information about the data. So we

consider multiple slices and go through them as an animation. A grid may contain many slices

so going through all the slices is not desirable. Therefore we would like to choose only those

15

slices which are important (Figure 8.5(c)).

We define important slices as those slices which contain grid points that have their function

value above a certain threshold value. This threshold can be set between 0 and 1. For eg.

threshold of 0.8 would mean that we want to select those slices which contain points whose

function value is in top 20 percent.

7.2 Sub-volume Extraction

The “volume rendering” functionality in Paraview helps us in viewing the entire field. “Sub-

volume extraction” is basically a subset of the original field. This feature helps us in viewing

the hotspots within a field.

For a given slice, we look at the maximum function value. We use Paraview’s filter called

“Extract subset” to get a sub-volume around the grid point that has maximum function value.

When we go through all important slices, we can use this feature to get all important hotspots

for the field. The dimensions of this sub-volume can be modified by the user (Figure 8.6(a)).

7.3 3-Slice Intersection

The idea here is again to get a better understanding of the data. In this feature, we look at

global maximum value(s) of the field and construct three axes parallel slices orthogonal to each

other and passing through that point. This helps us in viewing the surrounding area of grid

point through slices (Figure 8.6(b)).

To understand the entire work flow, refer to A.

16

Chapter 8

Experimental Results

We perform computations on input file containing 21 million particles and 6 scalar fields and

on another input file containing 9.5 million particles and 4 scalar fields. We use Paraview

to visualize our results for both phases of the project. We load the generated output file in

Paraview and visualize each scalar field separately.

8.1 Structured Grid Representation

We look at various scalar fields like sum of gaussians, density and velocity field generated using

our parallel algorithm.

Figure 8.1 shows the surface represented by particles for data file containing 5 million points.

The boundary of the reactor is visible and hollow cylindrical pellets inside the reactor are also

visible. We have used gaussian density function [2, 1] to extract the envelope surface of particles.

17

Figure 8.1: For computing the Sum of gaussians field, the parameters of the gaussian density

functions were fixed in such a way that at isovalue = 1 we get the surface represented by the

particles. For input file containing 5 million particles, we obtain the above surface representing

boundary of reactor and the pellets within.

For input file containing 21 million particles, the algorithm generates a sum of gaussians

field (Figure 8.2). Three different views are shown. Red colour in the back view represents high

density of particles in the neighbourhood of a grid point. Blue colour represents less particle

density. The given data file shows the start of flow in the initial time step. So we see more

number of particles in figure 8.2(c).

18

(a) (b) (c)

Figure 8.2: The sum of gaussians field for the input point cloud. (a) Front view. (b) Side view.

(c) Back view.

Figure 8.3 contains two scalar fields. Figure 8.3(a) and 8.3(b) shows the density scalar field.

In the given data file, particles’ density values ranged from 1.08 to 1.33886. For those grid

points which don’t have any particles in their neighbourhood, density is set as 0. For other grid

points, density is computed using Shepard interpolation. So most of the particles appear red.

Figure 8.3(c) and 8.3(d) represents velocity scalar field. For now only magnitude of the

velocity is considered to compute the velocity value at a grid point. Shepard interpolation is

done for computing this field as well. The data file shows the initial flow, so some particles

have velocity and others don’t. Accordingly grid points also get interpolated velocity value.

19

(a) (b)

(c) (d)

Figure 8.3: Density scalar field generated using Shepard interpolation (a) Front view, (b) Side

view. Velocity scalar field generated using Shepard interpolation (c) Front View, (d) Side View.

Figure 8.4 shows the sum of gaussians field computed for dataset containing 9.5 million

particles. We also measure the time taken by our algorithm on different datasets for various

resolutions.

20

Figure 8.4: The sum of gaussians field for input file containing 9.5 million particles.

8.2 Grid Visualization

Visualization method which was used previously was based on visualizing particles. The results

can be visualized in Paraview but Paraview’s inbuilt functions like Slice filter, which provides

a slice from the field, cannot be used directly for unstructured data. Our approach converts

the particle data into structured grid data which is comparatively easy and fast to visualize in

Paraview. We visualize the generated grid using Paraview’s framework and it’s inbuilt functions.

We implement various methods for interactive visualization.

Figure 8.5(a) shows sum of gaussians field represented as a structured grid and figure 8.5(b)

shows one of the slices from the field. Figure 8.5(c) displays one of the important slices from

the field.

21

(a) (b)

(c)

Figure 8.5: The sum of gaussians field for the input point cloud containing 21 million particles.

(a) Entire scalar field. (b) A slice from the field. (c) Important slice from the field.

Figure 8.6(a) shows the important slice along with extracted sub volume around the max-

imum function value point in that slice. Figure 8.6(b) shows 3-slice intersection view and the

intersection of these slices is at grid point that has the global maximum function value.

22

(a) (b)

Figure 8.6: The sum of gaussians field for the input point cloud containing 21 million particles.

(a) A sub-volume region within a field. (b) 3-slice intersection at global maximum value.

We test our visualization methods on another dataset containing 9.5 million particles. Figure

8.7(a) shows sum of gaussians field represented as a structured grid. Figure 8.7(b) shows one of

the important slices from the field. Figure 8.7(c) shows a sub-volume region extracted around

the grid point that has maximum function value among other grid points in selected slice.

Figure 8.7(d) shows the 3-slice intersection at grid point that has global maximum function

value.

23

(a) (b)

(c) (d)

Figure 8.7: The sum of gaussians field for input point cloud containing 9.5 million particles.

(a) Entire scalar field. (b) An important slice from the field. (c) Hotspot region for a slice. (d)

3-slice intersection at global maximum value.

We can use these visualization methods for any scalar field to find important slices and

hotspot regions present in the field. These methods helps us in getting better insights and

understanding about the field.

24

8.3 Execution Timings and Errors

Table in Figure 8.8(a) shows time taken and GPU memory consumed for different grid resolu-

tions for computing Density field. GPU time includes time taken to transfer data from CPU

to GPU, time taken by the kernel and time taken to transfer data from GPU to CPU. CPU

computation time is time taken by all the computations which are performed on the CPU.

Timings are for Density field. Other fields show similar results. Number of particles are 21

million.

Our main focus is on reducing the overall execution time of the algorithm. Size of the

input file is 2GB and it contains information for 21 million particles. We are able to read and

store the data in 6-7 seconds (File reading time). This process involves decoding the data from

base64 and decompressing it using zlib library. This time is similar for all the grid resolutions

as it is independent of that. 478× 478× 110 is a low resolution grid. Time taken to compute

interpolated values for all grid points is 0.5 seconds and memory consumed is 1.1 GB. As we

increase the grid resolution, GPU computation time and memory consumption increases but

even for a high resolution grid like 903 × 903 × 200, the change is not much. We are able to

compute function value at grid points for high resolution in less than 3 seconds and memory

consumed is around 1.7 GB, which is easily manageable.

Table in Figure 8.8(b) shows the error values observed for different grid resolutions. We

compute RMSD, absolute mean error and max difference error. Observation shows that as we

increase the grid resolution, error decreases. Error is computed for Density field. Number of

particles are 21 million. For low resolution grid, RMSD error is less than 3% and as we increase

the resolution, RMSD error drops down to 0.03%. Acceptable error value is less than 5%.

25

(a)

(b)

Figure 8.8: For 21 million particle dataset, (a) Algorithm execution timings and (b) computed

errors.

We measure execution timings for structured grid construction and errors on a different

dataset containing 9.5 million particles. File size is 750 MB. This dataset contains 4 fields. We

construct grid for velocity field. Figure 8.9(a) shows execution times and memory consumption

for constructing grid over different resolutions. As we increase the resolution, increase in GPU

computation time and GPU memory consumed shows same trend as observed for previous

dataset.

Figure 8.9(b) shows different types of errors that we compute on the dataset. We compute

RMSD, absolute mean error and max difference error for velocity field. We observe that as we

increase the resolution, error decreases. For high resolution grid, RMSD error value is less than

5% which is acceptable.

26

(a)

(b)

Figure 8.9: For 9.5 million particle dataset, (a) Algorithm execution timings and (b) computed

errors.

Experiments for measuring execution timings and errors for structured grid construction

are performed on an Nvidia Tesla K40 graphic card.

27

Chapter 9

Conclusion and Future Work

We are able to convert the given point cloud data into a 3-D grid and compute interpolated value

for each grid point for several scalar fields within seconds using out parallel implementation.

We are able to visualize those scalar fields using Paraview.

In the later phase of the project, we develop data visualization methods within the Paraview

framework for interactive and more intuitive visualization of the data. The above developed

methods can be used at Shell for visualization purposes.

In future, there can be methods to compute features of interest such as pores formed by the

pellets which will explore the use of topological methods such as Morse-Smale complex [6, 7].

The above developed methods are for single time step. New methods can be implemented for

time varying data as well.

28

Appendix A

Algorithm Work-flow

We have simulation data file that contains information about the particles. Input file is a “vtp”

file. vtp files use XML syntax to store the data. Data consists of various fields like velocity

and density. Each of these fields is represented as a node and text of node contains the data

corresponding to that field. This data is first compressed using zlib library and then encoded in

base64. To fetch the data, we need to decode the data and then decompress it. This is repeated

for all fields that we want to compute. This vtp file is given as an input to our algorithm for

generating structured grid. We use C++ and CUDA for implementation.

We maintain a text file which contains several parameters that we set as default to our

program. We provide the name of input file as one parameter. We pad our structured grid

using some border. Width of the border is provided as a parameter that can be changed if

needed. We get the particle location data from file and compute range of values in each axis.

Based on this range, we select the axis that has minimum range and user is asked to enter

the dimension for this axis. By default, we set this dimension to 120. This can be changed in

the parameter file. We compute three types of errors. Computation of errors is set as another

parameter in the file i.e whether to compute errors or not. We also compute important slices

in our algorithm. We set a threshold between 0 and 1 to determine which slices to select as

important. For eg. let global maximum function value for a field be fmax. Let’s say that we

will consider those slices as important slices that contain some grid point which will have it’s

function value in top 20%. Then our threshold will be set to 0.8 i.e all those slices will be

marked as important slices if they contain atleast one point which has function value greater

than 0.8×fmax. This is done for one axis. Similarly we set thresholds for other two axes as well.

Last parameter is the particle radius. For simulations on different datasets, particle radius may

also change. We set this as a parameter so that it is convenient to change.

Our algorithm takes two files as input - Data file and default parameters file. It uses the

29

data file to convert point cloud in to structured grid using an interpolation technique. This

conversion is done on GPU. The structured grid is written to a file and saved as “vtk” file. VTK

file has various attributes like DATASET, DIMENSIONS and SPACING. We set DATASET

as STRUCTURED GRID and mention the dimensions i.e resolution of the grid. SPACING is

the uniform step size of the grid. We write our output in binary format for each field.

We also compute important slices in our algorithm. This computation is also done on GPU.

One thread is launched for each grid point. Slice numbers of all the important slices are written

onto a file. We also compute the indices of grid points that have global maximum function

value. We create a single text file which contains all this information for each field. Following

figure sums up the above description.

We visualize the output vtk file in Paraview. We develop various visualization methods that

help us in understanding the data. Paraview provide it’s own python shell to write scripts. We

develop these methods using python language within Paraview. We use Paraview 5.2.1 version.

We implement a method to interactively visualize important slices. This method takes

important slices text file as input and works on corresponding vtk file loaded in Paraview. This

method is saved as a macro in Paraview. A macro is a python script that is saved as a button

in Paraview. Macros are loaded automatically when Paraview is launched.

We also implement sub-volume extraction method for a slice. This method finds the grid

point that has maximum function value in that slice. We use subset extraction filter, an inbuilt

function of Paraview, to extract a sub-volume around that grid point. The extents of this

sub-region can be set accordingly.

We implement 3-slice intersection method. This method takes important slices text file as

input and reads indices of grid points that have global maximum function value. Using the

index of grid point, we construct three slices orthogonal to each other such that their normal

30

is parallel to corresponding X-axis, Y-axis and Z-axis , passing through that point.

All these methods within Paraview are saved as macros. Macros are python scripts that

are loaded automatically when Paraview is launched. These macros are displayed as buttons in

Paraview. We also save visualization methods as state files. State file saves all the information

about a field as a .pvsm file. Visualization methods can be launched by either executing macros

or by loading desired state file. Each output vtk file has its corresponding important slices text

file.

31

Bibliography

[1] James F Blinn. A generalization of algebraic surface drawing. ACM transactions on graphics

(TOG), 1(3):235–256, 1982. 3, 4, 6, 9, 17

[2] Michael Krone, John E Stone, Thomas Ertl, and Klaus Schulten. Fast visualization of

gaussian density surfaces for molecular dynamics and particle system trajectories. EuroVis-

Short Papers, 2012:67–71, 2012. 6, 9, 17

[3] William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface

construction algorithm. In ACM siggraph computer graphics, volume 21, pages 163–169.

ACM, 1987. 6, 7

[4] Sung W Park, Lars Linsen, Oliver Kreylos, John D Owens, and Bernd Hamann. Discrete

sibson interpolation. IEEE Transactions on Visualization and Computer Graphics, 12(2):

243–253, 2006. 4, 6

[5] Donald Shepard. A two-dimensional interpolation function for irregularly-spaced data. In

Proceedings of the 1968 23rd ACM national conference, pages 517–524. ACM, 1968. 4, 7, 9

[6] Nithin Shivashankar, M Senthilnathan, and Vijay Natarajan. Parallel computation of 2d

morse-smale complexes. IEEE Transactions on Visualization and Computer Graphics, 18

(10):1757–1770, 2012. 28

[7] Nithin Shivashankar, Pratyush Pranav, Vijay Natarajan, Rien van de Weygaert, EG Patrick

Bos, and Steven Rieder. Felix: A topology based framework for visual exploration of cosmic

filaments. IEEE Transactions on Visualization and Computer Graphics, 22(6):1745–1759,

2016. 28

[8] Robin Sibson. A vector identity for the dirichlet tessellation. In Mathematical Proceedings

of the Cambridge Philosophical Society, volume 87, pages 151–155. Cambridge University

Press, 1980. 4, 6

32

	Acknowledgements
	Abstract
	Contents
	List of Figures
	1 Introduction
	2 Background
	3 Related Work
	4 Dataset Description
	5 Methodology
	6 Structured Grid Representation
	6.1 Algorithm Flow
	6.2 Error Computation
	6.2.1 Root Mean Square Deviation
	6.2.2 Mean Absolute Difference
	6.2.3 Infinity Norm

	7 Visualization
	7.1 Important Slices Animation
	7.2 Sub-volume Extraction
	7.3 3-Slice Intersection

	8 Experimental Results
	8.1 Structured Grid Representation
	8.2 Grid Visualization
	8.3 Execution Timings and Errors

	9 Conclusion and Future Work
	A Algorithm Work-flow
	Bibliography

