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Abstract. The Jacobi set of two Morse functions defined on a 2-manifold
is the collection of points where the gradients of the functions align with
each other or where one of the gradients vanish. It describes the relation-
ship between functions defined on the same domain, and hence plays an
important role in multi-field visualization. The Jacobi set of two piece-
wise linear functions may contain several components indicative of noisy
or a feature-rich dataset. We pose the problem of simplification as the
extraction of level sets and offset contours and describe an algorithm to
compute and simplify Jacobi sets in a robust manner.

1 Introduction

Motivation. The Jacobi set extends the notion of critical points to multiple
functions and helps describe the relationship between multiple scalar functions.
Edelsbrunner et al. [1] have shown that the Jacobi sets can be used to compute
a comparison measure between two scalar functions. Bennett et al. [2] have
used the Jacobi set to represent tunnels and the silhouette of a mesh, both of
which are subsequently used to compute a cross parameterization. Jacobi sets
have also been used to track features of time-varying events such as molecular
interactions, combustion simulation, etc. [3]. All the above applications face a
common challenge, namely the presence of degenerate regions and noise in the
data. The number of components of the Jacobi set is often more than what can
be visually comprehended. So, it is necessary to simplify the Jacobi set. The
simplification can be accomplished either using the notion of persistence [4], or
otherwise.

Prior work and our approach. In their paper, Bremer et al. [3] have described
a method to remove noise in the Jacobi set for time varying data. The persistence
of a component of the Jacobi set is the time interval between its birth and death.
This measure has been used to remove components that are either noise in the
data or unimportant features. Extending this for general functions is nontrivial
and hence a more complete approach with guaranteed error bounds is required.
We pose the problem of computing Jacobi sets as the computation of a level
set of a function defined on the input manifold. Jacobi set simplification now
simplifies the level set. We also ensure that the change in relationship between
the functions due to simplification does not exceed a given input threshold.



2 Background

Morse Theory. Morse theory studies the relationship between functions and
domains. Let M be a smooth Riemannian 2-manifold. Let f be a smooth function
defined on M and (z1,z2) be a local coordinate system such that the unit tan-

gent vectors (0%1, 6%2) form an orthonormal basis with respect to a Riemannian

metric. The gradient of f at x is defined as the vector Vf(z) = (gfl (z), g—é(x))

A point z is a critical point of f if V f(x) is the zero vector. The function f
is called a Morse function if the Hessian
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is non-singular at all critical points.

Level sets and Reeb graphs. The level set at ¢ is defined as the set of all points
where f attains the value c: f=1(c) = {# € M| f(z) = c}. The Reeb graph of f
is obtained by contracting connected level set components to points. Nodes in a
Reeb graph correspond to critical points of f, see Fig.1. The level sets sweep the
domain as we increase c over the range of the function f. During a sweep over the
domain, the topology of the level set changes at critical points of f. If the sweep
is in the direction of increasing function value, level set components are created
at minima, they merge or split at saddles, and are destroyed at maxima. Given
a sweep direction, saddles may be classified as split or merge saddles depending
on the change in the topology of level sets at these points.

Jacobi Sets. The Jacobi set of two Morse functions f and g defined on a 2-
manifold M is the collection of points or where the gradients of the functions
align with each other or one of the gradients vanish. Alternately, the Jacobi set
can be described as the collection of critical points of the family of functions
f+2g,AeR:

J={x € M| x is a critical point of f 4+ Ag or of Af + g}

Note that the Jacobi set contains critical points of f and g. Edelsbrunner and
Harer [5] used this alternate description to compute Jacobi sets of piecewise
linear functions. They also showed that the Jacobi set of two Morse functions is
a smoothly embedded 1-manifold in M .

3 Simplification

We prefer to use the description of the Jacobi set as the level set of a gradient-
based comparison measure [1] because it leads us to a natural algorithm for
computing Jacobi sets. Let M be a 2-manifold smoothly embedded in R3. The
comparison measure at a point x € M for two Morse functions f and g is
defined as k, = ||V f(z) x Vg(z)|. Assuming M is orientable, we define the



Fig.1. Left: A two-holed 2-
manifold and the height func-
tion defined on it. Points in blue,
green, and red correspond to min-
ima, saddle, and maxima of the
function, respectively. Right: The

Fig. 2. Offsetting a level set com-
ponent. Left: Level set compo-
nents on the manifold. Right:
Offsetting a level set component
(blue) to another component (red)
along an edge of the Reeb graph.

Reeb graph of the height function.
Loops in the Reeb graph corre-
spond to holes in the manifold.

sign extended comparison measure, k5, at the point x with unit normal 7 as

k3(f,9) = (Vf x Vg) - f. The sign extended comparison measure is a function
defined on the manifold M and the Jacobi set can be described as the set of
points where 15 equals zero, i.e. the zero level set of 5, J = k;1(0) = &5 (0).

The Jacobi set contains spurious loops because of noise and degeneracies in
the data. Simplification of the Jacobi set refers to the reduction in number of
components of J with minimal change to the relationship between the two input
functions.

The relationship between the functions is quantified by the global compari-
son measure Kk, which is equal to the comparison measure integrated over the
manifold and normalized by the total area [1].
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where dA, is the area element at z.

Offsetting components. The Jacobi set components are altered by computing
offset level set components. Let p and p’ be two level set components such that
their corresponding points on the Reeb graph are connected by a monotone
path. The level set component p is said to be offset to p’ if it is replaced by
the component p’. The cost of an offset operation is given by the hypervolume,
which is computed as an integral over the swept region R of the domain:

1
H:m / KzdAg. (1)
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Figure 2 shows a level set component offset upwards by a hypervolume ¢§. The

direction of offset is upward if the function value increases and downward other-

wise. We simplify the Jacobi set by computing offsets in an appropriate direction.
The following basic offset operations are used in the simplification process.

Merge : Two components whose edges share a common saddle are offset to
the saddle so that they merge. The merged component is further offset by a
small value resulting in a single component.

Split : A component is offset to a saddle and is further offset by a small
value resulting in a split.

Purge : A component is offset to a local maximum or minimum. A further
offset by a small value removes the component.

Create : A component is created at a local maximum or minimum and offset
by a small value.

Figure 3 illustrates the basic offset operations, using the Reeb graph. The Reeb
graph is naturally suited to represent the offsets because it traces the connected
components of the level sets. Only two operations result in a reduction in the
number of components. Temporary splits may be required to obtain a small
number of components. We ensure that the number of splitting operations is
lower than the number of component merging operations. We show in the next
section that twice the total hypervolume swept during the operations is an upper
bound over the total change in relationship between the functions.

The first step in the simplification procedure is the computation of the Reeb
graph for k5. Arcs in the Reeb graph that contain the zero level set are also
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a) Merge b) Split
c) Purge ) Create

Fig. 3. Different offset operations used during simplification. All offsets are shown
against the Reeb graph of 5.

Algorithm. The required simplification is specified as a percentage of the global
comparison measure. The corresponding hypervolume threshold, i.e., the total



hypervolume allowed for the operations is calculated next. Since each simplifica-
tion operation involves exactly one critical point, we can represent an offset by a
critical point. We first augment the Reeb graph by adding dummy nodes at level
zero. This augmented graph is transformed into a directed graph by replacing
each arc uv with a directed arc uv (arc from u towards v), if |s5| > |5], see Fig.
4 . Each vertex is then assigned a profit P(v) given by

P(v) = {1 if v is a dummy vertex

in(v) — out(v) otherwise,

where in(v) and out(v) represent the indegree and outdegree of v in the directed
graph. The profit for a non dummy node signifies the reduction in number of
Jacobi set components if the operation corresponding to the node is chosen.
The optimal simplification can now be formulated as an integer linear program
(ILP) that maximizes profit. The variables in the ILP correspond to nodes of
the directed Reeb graph.

max Z P(v)x,

subject to constraints

Y Cw)w, <T

Ty — Ty < 0 for a directed arc uv

Ty + 2z, <1 w,w adjacent to a common dummy node
Xy, T € {0,1}

The cost C(v) for each simplification operation is the sum of hypervolumes of
the incoming arcs. T is the threshold given as input. A simplification operation
is performed on a node if the corresponding variable in the ILP is set to one. The
first constraint bounds the total hypervolume for the simplification. The second
constraint enforces a dependency between variables corresponding to a directed
arc uv. This dependency captures the fact that a simplification operation at
v can be performed only after a level set component has been offset through
the node u. At dummy vertices, there is a choice to perform an offset in either
of the directions but not both. This choice is modeled in the third constraint.
The ILP is a variant of the knapsack problem with dependencies among objects.
Though a solution to the above ILP corresponds to the optimal simplification,
the computation is slow in practice. So, we resort to a greedy strategy that
chooses the least cost offset operation at every step until the threshold is reached.
The greedy strategy has an additional advantage-it enables the creation of a
multi-resolution representation of the Jacobi set.

The greedy algorithm requires all nodes to be stored in a priority queue.
The priority queue is initialized with all possible simplification operations and
updated with new operations that may become valid after an offset is performed.
We define a node of the directed Reeb graph as unreachable if it cannot be
reached by a path from a dummy node and reachable otherwise. Unreachable
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Fig. 4. Directed Reeb graph. The Fig. 5. A Section of a Reeb graph
dotted line in the figure shows level with unreachable vertices shown in
0. The dummy vertices are shown the boxed rectangle. The unreach-
in black on the zero line. The profit able component prevents the algo-
for each node is also shown. rithm to proceed beyond the merge

saddle v.

nodes may become obstacles that prevent offset operations. For example, a saddle
with an incoming arc from an unreachable node prevents a merge operation,
see Fig.5. Let G denote the directed Reeb graph and H denote the subgraph
of G containing all unreachable vertices. A component J of H is a connected
component in the undirected version of H. The cost of removing J is the sum of
the cost of all edges of G that have at least one end point in J. If the algorithm
is not able to proceed due to some obstacles, then least cost components of
unreachable vertices are removed from G until a valid operation is identified.
Finally, we extract offset components using seed sets stored in the Reeb graph [6].
We also ensure that the number of simplification operations with negative profits
is smaller than a constant fraction of the operations with positive profits. This
ensures that the number of components decreases as a result of simplification.

4 Analysis

In this section we show that twice the hypervolume swept during a simplification
operation is an upper bound over the change in the relationship between the
input functions.

Simplifying the input function. We do not change the function values in our
experiments. However, we now compute changes to the function f caused by a
small offset in order to obtain the upper bound. Figures 6a and 6b depict the
changes to the function f after offsets in the up and down directions respectively.
An upward offset introduces critical points at E and F of f restricted to level set
I of g. To accomplish this, the function values at E and F can be interchanged to
become f(F) and f(E) respectively. Within level set IT of g, the critical points
of f move from B and C to A and D respectively. The function f restricted to
level set II between A and D is made monotone to achieve this movement of
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Fig. 6. Simplifying the input function. The left column shows a Jacobi set component
J; and its offset version J; . The dashed lines are level sets of the function g. The
center column shows f restricted to the level sets I and II. The right column shows the
simplified function f. that corresponds to the offset Jacobi set component J;.

critical points. The function values at A and D do not change and therefore the
new pair have a reduced persistence. Downward offset destroys the critical point
pair E and F and the restricted function f between E and F is made monotone.
The function values at E and F are interchanged to become f(F') and f(E)
respectively. Within level set II of g, critical points move from A and D to B
and C respectively.

Effect on global comparison measure. As shown by Edelsbrunner et al. [1],
the global comparison measure is given by

K= o | im0

veJ

where sign(v) is defined as

an(v) +1 if v is a maximum of fig-1(g(v))
sign(v) =
9 —1 otherwise.

Let J; denote the i*" component of the Jacobi set. Define

UL(M» [ stgntw)s(o)ds

vel;

k; can be interpreted as the contribution of J; to the global comparison measure,

K=, Ki.



Since the change to the function f corresponding to an offset is local to the
region of the component, we will now compute the change in k; corresponding
to an upward offset. If f, is the modified function, the change in «; is given by

2

0k = ———
ors| Area(M)

[ sign)s. g~ [ sign)(w)dg|
vel, vel;
Let R be the region of M swept during the offset and R; be the region where

the level sets of g do not intersect J; (shaded region in Fig.6a). The integral over
J; can be rewritten as a sum of integrals over two regions:

b0l = o] [ siom@).0)da— [ sign(w)1(w)dg
veEJ!NRy vel; (2)
+ / sign(v) f«(v)dg|.
veJ;N(R—Ry)

Consider the level sets I in Fig.6a. The difference between function values at
and F' can be written as

E
Fo(F) — f.(E) = f(E) — f(F) = / IV fu(a)|dL.
F

Here, V f(x) represents the tangential component of V f(z) along the level sets
and dl is the length element along the level set. The integral of sign(v) f.(v) over
J: N Ry can be rewritten as an integral over Ry using the above expression,

[ signto)f.)dg = [[19 @i,
UGJ;ﬁRl TER,

Let du be the length element orthogonal to the level set. The area element is
given by dldu. Using the fact that dg = ||Vg(z)||du,

/ sign(v) f.(v)dg = // IV (@) || Vg () | didu = / IV () x Vo(a)|dAq

veliNRy TER, TER,

- / kndA,. 3)
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Consider the level set II of g in Fig.6a:

A
Fo(A) = F(A) = £(B) + / IV o) |l
B



and
C
£.(D) = /(D) = £(C) - / IV () .
D

Combining the above two equations,

(F(C) — F(B)) — (fu(D) — £.(A)) =(fu(A) — F(B)) + (F(C) — £.(D))
A C
- / IV () i+ / IV () .
B D

All pairs of points A,D € J, N (R — R;) have a corresponding pair B,C € J,.
So, we have

sign(v)f.(v)dg ~ [ sign(v)f(v)dg]

veEJ,N(R—R1) vEJ;
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Substituting (4) and (3) in (2) and using the triangle inequality,

| <
k] <

2
2 [ k.dA, =2H.
rea(M) /K d

R

The above inequality can be similarly derived for the downward offset. Thus, the
hypervolume is a conservative estimate of the change in relationship between f
and g caused by an offset.

5 Implementation for Piecewise Linear Functions

Scalar scientific data is typically represented by piecewise linear functions on
triangle meshes, where the gradient and hence 5 is not defined at vertices of
the mesh. Given a vertex v of the triangle mesh, its neighborhood is the Voronoi
region as shown in Fig. 7. Meyer et al. [7] used the Voronoi region to define
discrete differential operators with minimal numerical error for triangulated sur-
faces. Let 11,75, -+ ,T; be triangles that intersect the neighborhood R of v.
The sign extended comparison measure £° is constant within each of the regions
T; N R. We follow Meyer et al. to define x5 as the average value of the sign
extended measure over R;

S 1
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Fig. 7. Consider the vertex v and its adjacent vertices as a point set. The neighborhood
R of a vertex v on a piecewise linear surface is represented by the Voronoi region of v.

where x% is the value of the sign extended comparison measure at a point that
lies in the interior of 7T;. Note that the gradients of f and g are constant in the
interior of a triangle and hence 5 is also constant within a triangle. The sign
extended comparison measure is stored at vertices and a linear approximation is
used within the edges and triangles. This approximation does not introduce sig-
nificant artifacts in practice. The zero level set can be extracted using a marching

triangles algorithm or from seed sets computed using a Reeb graph of x5.

6 Applications

We demonstrate the usefulness of the simplified Jacobi set using two different
applications. Our approach to the definition and simplification of Jacobi sets is
particularly useful when studying the relationship between two functions using
their gradients.

Visualizing Silhouettes. Given a view direction d in R and a 2-manifold
M embedded smoothly in R3, the silhouette is the set of points in M where
the tangent plane is parallel to d. Consider a Cartesian coordinate system with
the z-axis along the view direction d. The Jacobi set of the two scalar fields
f(z,y,2) = x and g(x,y,2) = y is the required silhouette.The silhouette of a
model of the hand is shown in Fig.8(c). The model is shown in the original ori-
entation in Fig.8(a). The view direction is perpendicular to the plane of paper.
The orientation of the model has been changed for a better view of the com-
puted silhouette in Figs.8(b) and 8(c). As seen from the figure, the silhouette
has many components that are unimportant and the silhouette itself appears
to contain noise. The simplification process removes small components because
their removal does not adversely affect the relationship between the fields f and
g used to compute the silhouette. We found that simplification using 2% thresh-
old removed all noise. The Jacobi set was simplified using the greedy algorithm.

Combustion. We apply our algorithm to study a time varying dataset from
the simulation of a combustion process. This application demonstrates the use
of simplification when handling degenerate data. Degeneracies occur when &, is
zero within a region, resulting in the Jacobi set containing higher dimensional
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Fig. 8. Silhouettes. (a) Model of a hand in its original orientation. (b) Silhouette when
viewed from a different angle. (c¢) Simplified silhouette.

(b) (c)

Fig. 9. Combustion. (a) Jacobi set of Hz and O in the 64th time step. (b) Simplified
Jacobi set. (¢) Concentration of Os.

parts. During simplification, Jacobi set components within degenerate regions
are automatically removed because they do not contribute to .

The dataset consists of the concentrations of Hy(fuel) and Oz (air) defined on
a 600x600 grid for 67 time steps. We compute and simplify the Jacobi set for Hy
and Oy at different time steps to identify the front of combustion. Combustion
begins at regions where the fuel-air mixture is appropriate for ignition. The data
is degenerate away from the front, thereby introducing noise in the Jacobi set.
Figure 9 shows the results for the 64th time step when the combustion is in
its final stage. The simplified Jacobi set again appears at the front. Figure 9(c)
shows the O2 concentration. Blue signifies a low function value and red signifies
a high function value.The front consists of the boundary of red regions, which is
also traced by the simplified Jacobi set.



7 Conclusions

We have described a robust algorithm for simplifying the Jacobi set of two Morse
functions. Our algorithm ensures minimal change to the relationship between
the two functions. Future work includes extending the algorithm to multiple
functions and higher dimensions.
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