
Edit Distances for Comparing Merge Trees
Raghavendra Sridharamurthy* Adhitya Kamakshidasan† Vijay Natarajan‡

Department of Computer Science and Automation
Indian Institute of Science, Bangalore

ABSTRACT

A merge tree captures the topology of sub-level and super-level sets
in a scalar field. Estimating the similarity or dissimilarity between
merge trees is an important problem with applications to visualiza-
tion of time-varying and multi-field data. We present a tree edit
distance based approach with a general subtree gap model to com-
pare merge trees. The cost model is based on topological persistence.
Experimental results on time-varying data show the utility of the
method towards a feature-driven analysis of scalar fields.

1 INTRODUCTION

Scalar functions are used to model many interesting aspects of sci-
entific processes. Topological structures like merge trees [3] (see
Figure 1) provide a succinct representation of a scalar function,
which can then be used to further analyze the function and gather
interesting insights. Multiple scenarios require a method to compare
scalar functions. For example, tracking features in time-varying
phenomena, identifying preserved features in ensemble simulations,
or comparing simulated data against measured data. In all these sce-
narios, there is a need for a distance measure that captures similarity
or dissimilarity. Such distance measures have been studied both
from theoretical and practical perspectives. In terms of theoretical
work, distance measures have been designed for comparing scalar
fields represented by topological structures like the Reeb graph [1],
contour tree and merge tree [5] and persistence diagram [4]. These
measures satisfy provable properties like stability and discrimination
power. But with few exceptions, the measures are not efficiently
computable. From a practical perspective, algorithms are available
to compute similarity between contour and merge trees [2], and also
between extremum graphs [6].

Defining and computing a tree edit distance that allows for gaps
is a well-studied problem. The computation has been shown to be
NP-hard for arbitrary trees. However, for labeled binary trees a
polynomial time, dynamic programming-based algorithm exists [8].
We focus on merge trees, which constitute a special subset of labeled
binary trees. Further, we are interested in scenarios where the scalar
functions being compared are not significantly different from each
other. For example, functions from consecutive time-steps of time-
varying data or a function compared against another obtained via
a minor perturbation. Given the above assumptions, our aim is to
design an effective distance measure using topological persistence.
We demonstrate the utility of the measure using a few time-varying
data sets.

2 EDIT DISTANCE

Informally, distance measures give us an estimate of how “far” two
entities are. Tree edit distances are inspired by edit distances devel-
oped for strings and applied for string matching. Given two strings,

*e-mail: raghavendrag@iisc.ac.in
†e-mail: adhitya@iisc.ac.in
‡e-mail: vijayn@iisc.ac.in

a be

f lk

g

h

c

m i n

j d

(a) 2D scalar field
a

n

b

c
d

e
g

h
j
i

(b) join tree
a

n

i
m

lk

e
g

h j
f

(c) split tree

Figure 1: Merge trees. (a) A 2D scalar field (b,c) Merge trees obtained
by tracking the connectivity of sub-level sets (preimage of f−1(−∞,c])
or the super-level sets (preimage of f−1[c,∞)).

one is transformed into the other using a sequence of edit operations
with non-negative associated costs. The distance is defined as the
minimum cost over all transformations. Similar distance measure
may be defined for labeled ordered trees with edit operations like
relabeling, addition, and deletion of nodes.

Join trees consist of a collection of minima M = {mi}, saddles
S= {s j}, and a global maximum. The structure of a join tree satisfies
specific properties. Excluding the golbal maximum, which is the
root of the tree, every node has either zero (if it is a minimum)
or two children (if it is a saddle). All minima can be paired with
saddles based on the notion of topological persistence [4] except
for one that persists and can be paired to the lone global maximum.
Each such pair (m,s) represents a feature and its persistence can
be calculated as pers(m) = pers(s) = f (s)− f (m). Split trees are
defined similarly. Join/split trees are together referred to as merge
trees.

Xu [8] describes a distance measure with a focus on correctness
and worst case runtime analysis for computing the measure. We
describe a distance measure that is also based on edit distances
with a general subtree gap similar to Xu. However, our focus is
on applicability to merge trees. The edit operations are (a) Relabel
nodes, (b) Insert a subtree or gap, and (c) Delete a subtree or gap. A
gap is defined as collection of nodes that are present in one tree but
not in the other. We do not distinguish between starting gaps and
continuing gaps.

A key property of the join tree is that it supports only a restricted
set of insert/delete operations. Consider a minimum-saddle pair
(m,s). Let l denote the parent of s and m′ denote the child of s that
is neither equal to m nor ancestor of m. If s is deleted, then m should
also be deleted, and vice-versa, also m′ is paired with l. But deletion
of s does not result in the deletion of the entire subtree rooted at s.

Consider two join trees T1 and T2 representing scalar functions
f1 and f2, whose ranges are normalized to lie within [0,1]. Let
their vertex sets be V1 and V2, with |V1|= m, |V2|= n. The distance
measure is defined on the preorder traversal of the trees. A relabel
cost r(i, j) is included if a node i from T1 is relabeled to node j in
T2 and a gap cost g(i) is included when a node part of a gap.

Given 1 ≤ i′ ≤ i ≤ m and 1 ≤ j′ ≤ j ≤ n, the edit distance is
defined as

Figure 2: Time-step 0 (top) and 74 (bottom) of the flow around a
cylinder simulation. The split tree along with the critical points is
overlayed.

3
7

7
5

1
1
3

1
5
1

1
8
9

2
2
7

2
6
5

3
0
3

3
4
1

3
7
9

4
1
7

4
5
5

4
9
3

5
3
1

5
6
9

6
0
7

6
4
5

6
8
3

7
2
1

7
5
9

7
9
7

8
3
5

8
7
3

9
1
1

9
4
9

9
8
7

Timesteps

0

1

2

3

4

5

D
is
ta
n
ce

Figure 3: The plot shows distances computed between time step 0
and time steps 0-1000. The time steps and the distances are indicated
on the x-axis and the y-axis respectively. From this plot, a time period
of 74-75 can be identified.

D [i′..i, j′.. j] = min


D [i′..i−1, j′.. j−1]+ r(i, j),
D⊥∗[i′..i, j′.. j],
D∗⊥[i′..i, j′.. j],

If nodes corresponding to both i and j exist, then first expression
gives the relabel cost, else depending on whether i or j is a gap node,
D⊥∗ or D∗⊥ are used. D⊥∗ and D∗⊥ are defined based on the gap
model and details are provided in Xu [8].

We propose to utilise well-known properties of merge trees to
define appropriate costs for the edit operations.
Relabel cost. If the node i∈V1 is matched with node j ∈V2, define
the cost of relabelling i to j as r(i, j) = | f1(i)− f2(j)|
Add/delete gap cost. We define the cost of a gap node irrespective
of whether it is a minimum or a saddle, as the persistence of the
feature to which the node belongs to: g(m) = g(s) = pers(m) =
pers(s).

The overall cost is given by the minimum edit distance cost de =
D [1..m,1..n] from the algorithm. We compute de by incorporating
the above-mentioned costs into D and computing it in a bottom up
fashion.

3 EXPERIMENTAL RESULTS

We demonstrate the potential utility of the distance measure by
applying it to analyse time-varying data and to study symmetry in
scalar fields .
Periodicity in time-varying data. To demonstrate the utility of the
measure, we use Bénard von Kárman vortex street data-set formed

a

b

cd

e

f
g

Figure 4: 2D synthetic data-set generated by sum of guassians.

by flow around a cylinder [7]. Figure 2 shows few timesteps of the
data-set. The data-set is known to exhibit a periodicity of 75 and [6]
detects another period of 38 along with 75. To identify periodicity,
we compare the split tree of each time step with all 1000 time steps
of the data-set. We plot the distances obtained by our measure in
Figure 3 and observe a periodicity between 74 and 75.
Detecting symmetry or asymmetry. We use a synthetic data-set
(see Figure 4) that contains seven regions out of which five are
symmetrical and the other two (named as ‘a’ and ‘b’) are slightly
perturbed to cause asymmetry. We apply our distance measure to
compare each subtree corresponding a region with the other and we
are able to distinguish between symmetric and asymmetric regions.
Region d, for example has a distance close to 0 with regions c,e, f ,g;
0.53 with region b and 0.45 with region a. This is consistent with
the premise upon which the data is generated.

4 CONCLUSIONS

We present a distance measure based on edit distances. We define
appropriate costs based on topological properties of the merge trees.
The measure is parameter-free. The distance computation is however
not real-time. We are currently working toward improving the effi-
ciency of the computation. We believe that adding a geometric cost
to the model will make the measure more disriminative. Analyzing
the theoretical properties such as stability and optimality are also
challenging open problems.

ACKNOWLEDGMENTS

We acknowledge support from the Department of Science and
Technology, India (DST/SJF/ETA-02/2015-16) and from the Joint
Advanced Technology Programme, Indian Institute of Science
(JATP/RG/PROJ/2015/16).

REFERENCES

[1] U. Bauer, X. Ge, and Y. Wang. Measuring distance between reeb graphs.
In Proc. 13th Symp. Comp. Geom, pages 464–474. ACM, 2014.

[2] K. Beketayev, D. Yeliussizov, D. Morozov, G. H. Weber, and B. Hamann.
Measuring the distance between merge trees. In TopoinVis III, pages
151–165. Springer, 2014.

[3] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all
dimensions. Computational Geometry, 24(2):75–94, 2003.

[4] H. Edelsbrunner and J. Harer. Persistent homology-a survey. Contempo-
rary mathematics, 453:257–282, 2008.

[5] D. Morozov, K. Beketayev, and G. Weber. Interleaving distance between
merge trees. Discrete & Computational Geometry, 2013.

[6] V. Narayanan, D. M. Thomas, and V. Natarajan. Distance between
extremum graphs. In PacificVis, pages 263–270, 2015.

[7] T. Weinkauf and H. Theisel. Streak lines as tangent curves of a derived
vector field. IEEE Trans. Vis. Comp. Graphics, 16(6):1225–1234, 2010.

[8] H. Xu. An algorithm for comparing similarity between two trees. arXiv
preprint arXiv:1508.03381, 2015.

	Introduction
	Edit Distance
	Experimental Results
	Conclusions

